18EC45

Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Signals and Systems

TIME: 03 Hours

Max. Marks: 100

- Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**. 02. Short forms used take usual meaning.
 - 03. Missing data may be suitably assumed

		Module -1	*Bloom's Taxonomy Level	Marks
Q.01	a	Distinguish between (i) Periodic and Non-periodic signals (ii) Deterministic and Random signals.	L1	4 Marks
	b	Determine and sketch the even and odd components of the following signals: (i) $x[n] = \begin{bmatrix} -2 + n^2, -1 \le n \le 3 \\ 0, \text{ otherwise} \end{bmatrix}$	L2	8 Marks
		(ii) $x(t) = \begin{cases} 2t, & 0 < t < 1\\ 2(2-t), & 1 < t < 2 \end{cases}$		
	с	Sketch and determine the energy of the following signals: (i) $x(t) = r(t+1) - r(t) - r(t-2) + r(t-3)$ (ii) $x[n] = -u[n-1] + u[n-5]$	L3	8 Marks
	-	OR		
Q.02	a	Two signals $x(t)$ and $g(t)$ are shown in Fig.Q2(a). Express the signal $x(t)$ in terms of $g(t)$.	L3	8 Marks
		Fig. Q2(a)-i		
	b	Determine whether each of the following signals is periodic or not: If periodic, find the fundamental period: (77)	L2	6 Marks
		(i) $x[n] = \sin(3n)$ (ii) $x[n] = \cos(0.3\pi n + \frac{\pi}{4})$ (iii) $x[n] = \sin(\frac{7\pi}{37}n)$		
	с	A signal $x(t) = (t + 1)[u(t) - u(t - 1)]$, is applied as input to a differentiator. Obtain the output signal y(t) and sketch the same.	L3	6 Marks
Module-2				
Q. 03	a	Following signals represent input and impulse response of a continuous-time Linear and Time-Invariant (LTI): $x(t) = u(t) - u(t - 3)$ $h(t) = e^{-2t}[u(t + 1) - u(t - 1)]$ Obtain the output for the applied input.	L3	8 Marks

18EC45

	b	Determine whether the following systems represented by input-output relations are Time-Invariant and Invertible: (i) $y[t] = x\left(\frac{t}{2}\right)$ (ii) $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$ (iii) $y[n] = x[n] + x[n-1]$ (iv) $y[n] = x[n]u[n]$	L2	8 Marks
	c	Perform Convolution operation on the following signals: $x[n] = \delta[n + 1] - \delta[n - 1] + \delta[n - 3]$ $h[n] = \delta[n] - \delta[n - 2]$ Sketch the resulting signal.	L3	4 Marks
		OR		
Q.04	а	Determine whether the following system represented by input-output relation is stable and causal: $y[n] = x[n + 1] + x[n] + x[n - 1]$.	L3	4 Marks
	b	Given $x[n] = \alpha^n u[n]$ and $h[n] = \beta^n u[n-1]$, obtain $y[n] = x[n] *h[n]$.	L3	8 Marks
	c	Show that distributive and associative laws hold good with respect to convolution operator in continuous-time domain.	L2	8 Marks
		Module-3		
Q. 05	а	Show that the step response of an LTI system is running integral of impulse response.	L2	4 Marks
	b	Determine whether the following systems represented by impulse response are causal and stable: (i) $h[n] = 5 \delta[n]$ (ii) $h[n] = \left(\frac{1}{4}\right)^{ n }$ (iii) $h[n] = \left(\frac{1}{2}\right)^{-n} u[-n]$	L2	6 Marks
	с	Find the complex Fourier coefficients X(k) for x(t) shown in Fig. Q5(c). Also sketch magnitude and phase spectra. $ \begin{array}{c} $	L3	10 Marks
		OR		
Q. 06	а	Find complex Fourier series coefficients $X(k)$ of the signal $x(t) = sin\pi t $	L3	6 Marks
	b	Using the derivative property of continuous-time Fourier series, obtain X(k) of the signal x(t) shown in Fig. Q6(b). $\begin{array}{c} & & \\ &$	L3	8 Marks
	c	Obtain the step response for the following systems represented by impulse response: (i) $h[n] = \delta[n+3] - 2 \delta[n] + 3 \delta[n-2]$ (ii) $h[n] = u[n+2] - 2u[n] + u[n-3]$	L2	6 Marks

18EC45

		Module-4		
Q. 07	а	Given $x(t) = \begin{bmatrix} A, -T < t < T \\ 0, \text{ Otherwise} \end{bmatrix}$	L3	6 Marks
		Obtain the Fourier transform of $x(t)$. Also, sketch the magnitude and phase spectra.		
	b	Derive the Parseval relationship applicable to DTFT and mention its significance.	L2	6 Marks
	c	Given the Fourier transform of x(t), $X(j\omega) = \frac{j\omega}{-\omega^2 + 7 j\omega + 6}$, find the	L3	8 Marks
		Fourier transform of the following signals: (i) $x(4t - 8)$ (ii) $\int_{-\infty}^{t} x(\tau) d\tau$ (iii) $e^{-j100t}x(t)$		
		OR		
Q. 08	а	Show that DTFT is a periodic function of fundamental period 2π rad.	L2	4 Marks
	b	State and prove the following properties with respect to continuous-time Fourier Transform: (i) Frequency shifting (ii) Modulation	L2	8 Marks
	c	Find the DTFT of the following sequences: $(1)^n$	L3	8 Marks
		(i) $x[n] = n \ 0.5^n u[n]$ (ii) $x[n] = \left(\frac{1}{4}\right)^n u[n-4]$ (ii) $(iii) x[n] = \left(\frac{1}{4}\right)^n u[n] * \left(\frac{1}{4}\right)^n u[n]$		
		(4) (3) (3)		
		Module-5		
Q. 09	a	Find the Z-transform of the signal $x[n] = (n(-0.5)^n u[n]) * 4^n u[-n].$	L3	8 Marks
	b	Using long division method, find the inverse Z-transform of $X(z) = \frac{2+z^{-1}}{1-0.5z^{-1}}$ ROC: $ z > 0.5$	L3	4 Marks
	c	An LTI system has impulse response $h[n] = 0.5^{n}u[n]$. Determine the input to the system if the output is given by $y[n] = 0.5^{n}u[n] + (-0.5)^{n}u[n]$	L3	8 Marks
		OR		
Q. 10	a	Determine the transfer function and a difference equation representation of an LTI system described by the impulse response: $n = 2^{2}$	L3	8 Marks
		$h[n] = \left(\frac{1}{3}\right)^n u[n] + \left(\frac{1}{2}\right)^{n-2} u[n-1]$		
	b	A stable and causal LTI system is described by the difference equation: y[n] + 0.25y[n - 1] - 0.125y[n - 2] = -2x[n] + 1.25x[n - 1]. Find the system impulse response.	L3	8 Marks
	c	Find the Z-transform of $x[n] = 0.5^n u[n] + 2^n u[-n-1]$.	L3	4 Marks
L	1			maino

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.