Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

 Signals and SystemsTIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.
02. Short forms used take usual meaning.
03. Missing data may be suitably assumed

Module -1			*Bloom's Taxonomy Level	Marks
Q. 01	a	Distinguish between (i) Periodic and Non-periodic signals (ii) Deterministic and Random signals.	L1	$\begin{aligned} & \hline 4 \\ & \text { Marks } \end{aligned}$
	b	Determine and sketch the even and odd components of the following signals: (i) $\mathrm{x}[\mathrm{n}]=\left\{\begin{array}{c}-2+\mathrm{n}^{2},-1 \leq \mathrm{n} \leq 3 \\ 0, \text { otherwise }\end{array}\right.$ (ii) $\quad \mathrm{x}(\mathrm{t})=\left\{\begin{array}{cc}2 \mathrm{t}, & 0<\mathrm{t}<1 \\ 2(2-\mathrm{t}), & 1<\mathrm{t}<2\end{array}\right.$	L2	8 Marks
	c	Sketch and determine the energy of the following signals: (i) $\quad x(t)=r(t+1)-r(t)-r(t-2)+r(t-3)$ (ii) $\quad \mathrm{x}[\mathrm{n}]=-\mathrm{u}[\mathrm{n}-1]+\mathrm{u}[\mathrm{n}-5]$	L3	8 Marks
OR				
Q. 02	a	Two signals $x(t)$ and $g(t)$ are shown in Fig.Q2(a). Express the signal $x(t)$ in terms of $g(t)$. Fig. Q2(a)-i Fig. Q2(a)-ii	L3	8 Marks
	b	Determine whether each of the following signals is periodic or not: If periodic, find the fundamental period: (i) $\mathrm{x}[\mathrm{n}]=\sin (3 \mathrm{n})$ (ii) $\mathrm{x}[\mathrm{n}]=\cos \left(0.3 \pi n+\frac{\pi}{4}\right)$ (iii) $\mathrm{x}[\mathrm{n}]=\sin \left(\frac{7 \pi}{37} \mathrm{n}\right)$	L2	$\begin{aligned} & 6 \\ & \text { Marks } \end{aligned}$
	c	A signal $\mathrm{x}(\mathrm{t})=(\mathrm{t}+1)[\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-1)]$, is applied as input to a differentiator. Obtain the output signal $\mathrm{y}(\mathrm{t})$ and sketch the same.	L3	6 Marks
Module-2				
Q. 03	a	Following signals represent input and impulse response of a continuous-time Linear and Time-Invariant (LTI): $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-3) \quad \mathrm{h}(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}}[\mathrm{u}(\mathrm{t}+1)-\mathrm{u}(\mathrm{t}-1)]$ Obtain the output for the applied input.	L3	8 Marks

	b	Determine whether the following systems represented by input-output relations are Time-Invariant and Invertible: (i) $y[t]=x\left(\frac{t}{2}\right)$ (ii) $y(t)=\int_{-\infty}^{t} x(\tau) d \tau$ (iii) $y[n]=x[n]+x[n-1]$ (iv) $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}] \mathrm{u}[\mathrm{n}]$	L2	$\begin{array}{\|l\|} \hline 8 \\ \text { Marks } \end{array}$
	c	Perform Convolution operation on the following signals: $\mathrm{x}[\mathrm{n}]=\delta[\mathrm{n}+1]-\delta[\mathrm{n}-1]+\delta[\mathrm{n}-3] \quad \mathrm{h}[\mathrm{n}]=\delta[\mathrm{n}]-\delta[\mathrm{n}-2]$ Sketch the resulting signal.	L3	$\begin{array}{\|l\|} \hline 4 \\ \text { Marks } \end{array}$
OR				
Q. 04	a	Determine whether the following system represented by input-output relation is stable and causal: $y[n]=x[n+1]+x[n]+x[n-1]$.	L3	$\begin{array}{\|l\|} \hline 4 \\ \text { Marks } \end{array}$
	b	Given $\mathrm{x}[\mathrm{n}]=\alpha^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$ and $\mathrm{h}[\mathrm{n}]=\beta^{\mathrm{n}} \mathrm{u}[\mathrm{n}-1]$, obtain $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}] * \mathrm{~h}[\mathrm{n}]$.	L3	$\begin{array}{\|l\|} \hline 8 \\ \text { Marks } \end{array}$
	c	Show that distributive and associative laws hold good with respect to convolution operator in continuous-time domain.	L2	$\begin{array}{\|l\|} \hline 8 \\ \text { Marks } \end{array}$
Q. 05 aShow that the step response of an LTI system is running integral of impulse response.			L2	$\begin{array}{\|l\|} \hline 4 \\ \text { Marks } \end{array}$
	b	Determine whether the following systems represented by impulse response are causal and stable: (i) $\mathrm{h}[\mathrm{n}]=5 \delta[\mathrm{n}]$ (ii) $\mathrm{h}[\mathrm{n}]=\left(\frac{1}{4}\right)^{\|\mathrm{n}\|}$ (iii) $\mathrm{h}[\mathrm{n}]=\left(\frac{1}{2}\right)^{-\mathrm{n}} \mathrm{u}[-\mathrm{n}]$	L2	$\begin{array}{\|l\|} \hline 6 \\ \text { Marks } \end{array}$
	c	Find the complex Fourier coefficients $\mathrm{X}(\mathrm{k})$ for $\mathrm{x}(\mathrm{t})$ shown in Fig. Q5(c). Also sketch magnitude and phase spectra. Fig. Q5(c)	L3	$\begin{aligned} & \hline 10 \\ & \text { Marks } \end{aligned}$
OR				
Q. 06	a	Find complex Fourier series coefficients $\mathrm{X}(\mathrm{k})$ of the signal $\mathrm{x}(\mathrm{t})=\|\sin \pi \mathrm{t}\|$	L3	$\begin{array}{\|l\|} \hline 6 \\ \text { Marks } \end{array}$
	b	Using the derivative property of continuous-time Fourier series, obtain X(k) of the signal $\mathrm{x}(\mathrm{t})$ shown in Fig. Q6(b). Fig.Q6(b)	L3	$\begin{array}{\|l\|} \hline 8 \\ \text { Marks } \end{array}$
	c	Obtain the step response for the following systems represented by impulse response: (i) $\mathrm{h}[\mathrm{n}]=\delta[\mathrm{n}+3]-2 \delta[\mathrm{n}]+3 \delta[\mathrm{n}-2]$ (ii) $\mathrm{h}[\mathrm{n}]=\mathrm{u}[\mathrm{n}+2]-2 \mathrm{u}[\mathrm{n}]+\mathrm{u}[\mathrm{n}-3]$	L2	$\begin{array}{\|l\|} \hline 6 \\ \text { Marks } \end{array}$

Module-4				
Q. 07	a	Given $x(t)=\left\{\begin{array}{c}\mathrm{A},-\mathrm{T}<\mathrm{t}<\mathrm{T} \\ 0, \text { Otherwise }\end{array}\right.$ Obtain the Fourier transform of $\mathrm{x}(\mathrm{t})$. Also, sketch the magnitude and phase spectra.	L3	$\begin{aligned} & \hline 6 \\ & \text { Marks } \end{aligned}$
	b	Derive the Parseval relationship applicable to DTFT and mention its significance.	L2	$\begin{aligned} & \hline 6 \\ & \text { Marks } \\ & \hline \end{aligned}$
	c	Given the Fourier transform of $x(t), X(j \omega)=\frac{j \omega}{-\omega^{2}+7 j \omega+6}$, find the Fourier transform of the following signals: (i) $\mathrm{x}(4 \mathrm{t}-8)$ (ii) $\int_{-\infty}^{t} x(\tau) d \tau$ (iii) $\mathrm{e}^{-\mathrm{j} 100 \mathrm{t}} \mathrm{x}(\mathrm{t})$	L3	$\begin{aligned} & \hline 8 \\ & \text { Marks } \end{aligned}$
OR				
Q. 08	a	Show that DTFT is a periodic function of fundamental period $2 \pi \mathrm{rad}$.	L2	$\begin{aligned} & \hline 4 \\ & \text { Marks } \end{aligned}$
	b	State and prove the following properties with respect to continuous-time Fourier Transform: (i) Frequency shifting (ii) Modulation	L2	$\begin{aligned} & \hline 8 \\ & \text { Marks } \end{aligned}$
	c	Find the DTFT of the following sequences: (i) $\mathrm{x}[\mathrm{n}]=\mathrm{n} 0.5^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$ (ii) $x[n]=\left(\frac{1}{4}\right)^{n} u[n-4]$ (ii) (iii) $\mathrm{x}[\mathrm{n}]=\left(\frac{1}{4}\right)^{\mathrm{n}} \mathrm{u}[\mathrm{n}] *\left(\frac{1}{3}\right)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$	L3	$\begin{aligned} & \hline 8 \\ & \text { Marks } \end{aligned}$
Module-5				
Q. 09	a	Find the Z-transform of the signal $\mathrm{x}[\mathrm{n}]=\left(\mathrm{n}(-0.5)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]\right) * 4^{\mathrm{n}} \mathrm{u}[-\mathrm{n}]$.	L3	$\begin{aligned} & \hline 8 \\ & \text { Marks } \end{aligned}$
	b	Using long division method, find the inverse Z-transform of $X(z)=\frac{2+z^{-1}}{1-0.5 z^{-1}}$ ROC: $\|z\|>0.5$	L3	$\begin{aligned} & 4 \\ & \text { Marks } \end{aligned}$
	c	An LTI system has impulse response $\mathrm{h}[\mathrm{n}]=0.5^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$. Determine the input to the system if the output is given by $y[n]=0.5^{n} u[n]+(-0.5)^{n} u[n]$	L3	$\begin{aligned} & \hline 8 \\ & \text { Marks } \end{aligned}$
OR				
Q. 10		Determine the transfer function and a difference equation representation of an LTI system described by the impulse response: $\mathrm{h}[\mathrm{n}]=\left(\frac{1}{3}\right)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]+\left(\frac{1}{2}\right)^{\mathrm{n}-2} \mathrm{u}[\mathrm{n}-1]$	L3	$\begin{aligned} & \hline 8 \\ & \text { Marks } \end{aligned}$
	b	A stable and causal LTI system is described by the difference equation: $y[n]+0.25 y[n-1]-0.125 y[n-2]=-2 x[n]+1.25 x[n-1]$. Find the system impulse response.	L3	$\begin{aligned} & \hline 8 \\ & \text { Marks } \end{aligned}$
	c	Find the Z-transform of $\mathrm{x}[\mathrm{n}]=0.5^{\mathrm{n}} \mathrm{u}[\mathrm{n}]+2^{\mathrm{n}} \mathrm{u}[-\mathrm{n}-1]$.	L3	$\begin{aligned} & \hline 4 \\ & \text { Marks } \end{aligned}$

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.

