Model Question Paper-2 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination
 Signals and Systems

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.
02 . Short forms used take usual meaning.
03. Missing data may be suitably assumed.

Module -1			*Bloom's Taxonomy Level	Marks
Q. 01	a	Given the signal $\mathrm{x}[\mathrm{n}]=(8-\mathrm{n})(\mathrm{u}[\mathrm{n}]-\mathrm{u}[\mathrm{n}-7])$, sketch the following signals: (i) $y[n]=x[4-n]$ (ii) $\mathrm{g}[\mathrm{n}]=\mathrm{x}[-2 \mathrm{n}+3]$	L2	$\begin{aligned} & 4 \\ & \text { Marks } \end{aligned}$
	b	Calculate the Energy and Power of the following signals: (i) $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-0.05 \mathrm{t}}[\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-10)]$ (ii) $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]$ (iii) $x(t)=5 \cos (200 \pi t)$ (iv) $\quad \mathrm{x}[\mathrm{n}]=(-2)^{\mathrm{n}}[\mathrm{u}(\mathrm{n}+1)-\mathrm{u}(\mathrm{n}-2)]$	L3	10 Marks
	c	Find whether the following signals are periodic or not. If periodic, find the fundamental period. (i) $x(t)=\sin ^{2}(400 \pi t)$ (ii) $\mathrm{x}(\mathrm{t})=\cos (2 \mathrm{t})+\sin (3 \mathrm{t})$ (iii) $\mathrm{x}(\mathrm{t})=\sin (4 \pi \mathrm{t})+\sin (5 \mathrm{t})$	L2	$\begin{aligned} & 6 \\ & \text { Marks } \end{aligned}$
OR				
Q. 02	a	Fig. Q2(a) shows two signals $x(t)$ and $y(t)$. Sketch the following signals. (i) $x(t) y(t-1)$ (ii) $x(t+1) y(t-2)$ (iii) $x(t) y(-1-t)$ (iv) $x(4-t) y(t)$ Fig. Q2(a)-(i) Fig. Q2(a)-(ii)	L3	10 Marks
	b	Evaluate the expression, $\int_{1}^{2} \mathrm{t}^{2} \delta(2 \mathrm{t}-3) \mathrm{dt}+\int_{-3}^{3} \delta(3 \mathrm{t}+5) \mathrm{dt}$	L2	$\begin{aligned} & 4 \\ & \text { Marks } \end{aligned}$
	c	Given the signal, $\mathrm{x}(\mathrm{t})=\mathrm{r}(\mathrm{t}+5)-\mathrm{r}(\mathrm{t}+4)-\mathrm{r}(\mathrm{t}-4)+\mathrm{r}(\mathrm{t}-5)$, sketch $\mathrm{x}(\mathrm{t})$ and its derivative.	L3	6 Marks
Module-2				
Q. 03	a	Determine whether the following system represented by input-output relation, is (i) Stable (ii) Memoryless (iii) Causal (iv) Time-invariant and (v) Linear: $\mathrm{y}(\mathrm{t})=\int_{-\infty}^{\mathrm{t}} \mathrm{x}(\tau) \mathrm{d} \tau$	L2	$\begin{aligned} & 6 \\ & \text { Marks } \end{aligned}$

* $_{\text {Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be }}$ attained by every bit of questions.

