Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Subject Title: Analog Circuits

TIME: 03 Hours

Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module -1			*Bloom's Taxonomy Level	Marks
Q. 01	a	Explain the design constraints of a classical discrete-circuit biasing arrangement with circuit and relevant equations. How does R_{E} provide a negative feedback action to stabilize the bias current?	L2	8
	b	Considering the conceptual circuit of common emitter configuration, derive the expressions for g_{m}, r_{Π}, and r_{e}. Draw the hybrid $-\Pi$ model of a transistor.	L1,L2	8
	c	A BJT having $\beta=120$ is biased at a DC collector current of 1 mA . Find the value of g_{m}, r_{e}, r_{Π} at the bias point.	L3	4
OR				
Q. 02	a	Design a fixed V_{G} bias circuit using Voltage divider arrangement to establish a DC drain current of 0.5 mA . The MOSFET is specified to have $\mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}, \quad \mathrm{~K}_{\mathrm{n}}{ }^{\prime} \mathrm{W} / \mathrm{L}=1 \mathrm{~mA} / \mathrm{V}^{2} \quad\{\lambda=0\}$. Use $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$.Calculate the percentage change in the value of I_{D} obtained when the MOSFET is replaced with another MOSFET having the same $\mathrm{k}_{\mathrm{n}}{ }^{\prime} \mathrm{W} / \mathrm{L}$ but $\mathrm{V}_{\mathrm{t}}=1.5 \mathrm{~V}$.	L3	10
	b	Explain the MOSFET biasing technique using a large drain-to-gate feedback resistance R_{G}. Design the drain-to-gate feedback biasing circuit to operate at a DC drain current of 0.5 mA . Assume $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, $\mathrm{k}_{\mathrm{n}}{ }^{\prime} \mathrm{W} / \mathrm{L}=1 \mathrm{~mA} / \mathrm{V}^{2}, \lambda=0$.	L3	6
	c	Draw and explain the small signal model of the MOSFET assuming $\lambda \neq$ 0.	L1	4
Module-2				
Q. 03	a	With a neat circuit diagram and ac equivalent circuit derive the expressions for $\mathrm{R}_{\mathrm{in}}, \mathrm{A}_{\mathrm{vo}}, \mathrm{A}_{\mathrm{v}}$ and R_{o} for common source amplifier with an unbypassed source resistance.	L2	8
	b	Explain the internal capacitances of a MOSFET and hence draw the high frequency small signal model of MOSFET.	L1,L2	6
	c	For the n -channel MOSFET with $\mathrm{t}_{\mathrm{ox}}=10 \mathrm{~nm}, \mathrm{~L}=1 \mu \mathrm{~m}, \mathrm{~W}=10 \mu \mathrm{~m}, \mathrm{Lov}=0.05$ $\mu \mathrm{m}, \mathrm{C}_{\mathrm{sbo}}=\mathrm{C}_{\mathrm{dbo}}=10 \mathrm{fF}, \mathrm{V}_{\mathrm{O}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SB}}=1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DS}}=2 \mathrm{~V}$. Calculate i) Cox ii) $\mathrm{Cov}_{\mathrm{ov}}$ iii) C_{gs} iv) C_{gd} v) $\mathrm{C}_{\mathrm{sb}} \quad$ vi) C_{db}	L3	6
OR				
Q. 04	a	Derive the expression for low frequency response of a common source amplifier.	L1,L2	8
	b	It is desired to design a phase-shift oscillator (Self biased JEFT amplifier) using a JEFT having $\mathrm{g}_{\mathrm{m}}=5000 \mu \mathrm{~s}, \mathrm{r}_{\mathrm{d}}=40 \mathrm{k} \Omega$, and feedback circuit resistance of $\mathrm{R}=10 \mathrm{k} \boldsymbol{\Omega}$. Select the value of ' C ' for oscillator operation at 1 kHz and R_{D} for a gain $\mathrm{A}=40$ to ensure oscillator action.	L3	4

	c	With a neat diagram explain working of a crystal oscillator. Explain series and parallel resonance action with equivalent circuits and relevant expressions. A crystal has $\mathrm{L}=0.334 \mathrm{H}, \mathrm{C}=0.065 \mathrm{pF}, \mathrm{C}_{\mathrm{M}}=1 \mathrm{pF}$ and $\mathrm{R}=5.5 \mathrm{k} \boldsymbol{\Omega}$. Calculate its series and parallel resonant frequency.	L3	8
Module-3				
Q. 05	a	With a neat block diagram explain the working of a negative feedback amplifier. How is the overall gain affected in these amplifiers?	L1,L2	8
	b	Determine the voltage gain, input and output impedance with feedback for a voltage series feedback amplifier having $A=-100, R_{i}=10 k \boldsymbol{\Omega}$, $\mathrm{R}_{0}=20 \mathrm{k} \boldsymbol{\Omega}$ for a feedback of i) $\beta=1$ and ii) $\beta=-0.5$	L3	8
	c	Draw the four basic negative-feedback topologies.	L1	4
OR				
Q. 06	a	Define power amplifiers and list the types of power amplifiers based on the location of Q point, conduction angle, efficiency and applications.	L1,L2	8
	b	Prove that the maximum conversion efficiency of a transformer coupled Class A amplifier is 50%.	L2	6
	c	Calculate the efficiency of a transformer coupled Class B amplifier for a supply of 12 V and peak output voltage of 6 V .	L3	2
	d	Explain in brief the working of a Class C power amplifier.		4
Module-4				
Q. 07	a	How does negative feedback affect the performances of an inverting amplifier using opamp? Derive the relevant expressions for Gain, input resistance and output resistance.	L2	8
	b	The opamp 714 C is connected as an inverting amplifier with $\mathrm{R}_{1}=1 \mathrm{k} \boldsymbol{\Omega}$ and $\mathrm{R}_{\mathrm{F}}=4.7 \mathrm{k} \boldsymbol{\Omega}$. Compute the closed loop parameters: $\mathrm{A}_{\mathrm{F}}, \mathrm{R}_{\mathrm{IF}}, \mathrm{R}_{\mathrm{OF}}, \mathrm{f}_{\mathrm{F} .}$. Given $A=400000, R_{i}=33 \mathrm{M} \Omega$ and $R_{0}=60 \Omega$; supply voltages are $\pm 13 \mathrm{~V}$; Max output voltage swing $= \pm 13 \mathrm{~V}$, Unity gain bandwidth $=0.6 \mathrm{MHz}$.	L3	6
		With a neat circuit diagram explain the opamp based inverting scaling amplifier and averaging circuit with relevant expressions for the output.	L1,L2	6
OR				
Q. 08	a	What is an instrumentation amplifier? What are its applications? With a neat circuit diagram explain an instrumentation amplifier using a transducer bridge.	L1,L2	10
	b	Draw the circuit and waveforms for an inverting Schmitt Trigger using opamp, with relevant expressions.	L1	4
	c	For an inverting Schmitt Trigger circuit $\mathrm{R}_{1}=15 \mathrm{~K} \Omega ; \mathrm{R}_{2}=1 \mathrm{~K} \Omega$ and $\mathrm{V}_{\text {in }}$ $=$ $10 \mathrm{~V}_{\mathrm{p}-\mathrm{pp}}$ sine wave. The saturation voltages are $\pm 14 \mathrm{~V}$ and $\mathrm{V}_{\text {ref }}=2 \mathrm{~V}$. i) Determine the threshold voltages V_{ut} and V_{lt}. ii) Find the value of Hysteresis voltage V_{hy}.	L3	6
Module-5				
Q. 09	a	Explain the working of a Successive Approximation type of ADC.	L2	8
	b	Explain with a neat circuit diagram, the working of a small signal half wave precision rectifier using an Opamp.	L2	4
	c	What is R-2R network type DAC? Explain with relevant expressions.	L1,L2	8
OR				
Q. 10	a	Explain the working of a second order high pass Butterworth filter with a neat circuit diagram and frequency response. Write the relevant design equations.	L1,L2	6
	b	Explain the operation of 555 timer as a Monostable multivibrator with relevant expressions.	L1,L2	8

| | c | In an astable multivibrator $\mathrm{R}_{\mathrm{A}}=2.2 \mathrm{~K} \Omega ; \mathrm{R}_{\mathrm{B}}=3.9 \mathrm{~K} \Omega$ and
 $\mathrm{C}=0.1 \mu \mathrm{~F}$. Determine the positive pulse width T_{c} and negative pulse
 th T_{d} and free running frequency $\quad \mathrm{f}_{\mathrm{o}}$ '. | L 3 |
| :--- | :--- | :--- | :--- | :--- |

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.

