Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Subject Title: Analog Circuits

TIME: 03 Hours

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	*Bloom's Taxonomy Level	Marks
Q.01	a	Explain the design constraints of a classical discrete-circuit biasing arrangement with circuit and relevant equations. How does R_E provide a negative feedback action to stabilize the bias current?	L2	8
	b	Considering the conceptual circuit of common emitter configuration, derive the expressions for g_m , r_{Π} , and r_e . Draw the hybrid $-\Pi$ model of a transistor.	L1,L2	8
	c	A BJT having β =120 is biased at a DC collector current of 1 mA. Find the value of g_m , r_e , r_{Π} at the bias point .	L3	4
Q.02	a	Design a fixed V _G bias circuit using Voltage divider arrangement to establish a DC drain current of 0.5mA. The MOSFET is specified to have V _t =1V, K _n 'W/L=1mA/V ² { $\lambda = 0$ }. Use V _{DD} = 12V.Calculate the percentage change in the value of I _D obtained when the MOSFET is replaced with another MOSFET having the same k _n 'W/L but V _t = 1.5V.	L3	10
	b	Explain the MOSFET biasing technique using a large drain-to-gate feedback resistance R _G . Design the drain-to-gate feedback biasing circuit to operate at a DC drain current of 0.5mA. Assume $V_{DD} = 5V$, k_n 'W/L=1mA/V ² , λ =0.	L3	6
	c	Draw and explain the small signal model of the MOSFET assuming $\lambda \neq 0$.	L1	4
	1	Module-2		
Q. 03	а	With a neat circuit diagram and ac equivalent circuit derive the expressions for R_{in} , A_{vo} , A_v and R_o for common source amplifier with an unbypassed source resistance.	L2	8
	b	Explain the internal capacitances of a MOSFET and hence draw the high frequency small signal model of MOSFET.	L1,L2	6
	с	For the n-channel MOSFET with $t_{ox}=10$ nm, L=1µm, W=10µm, L _{OV=} 0.05 µm, C _{sbo} = C _{dbo} = 10fF, V _O =0.6V, V _{SB} =1V and V _{DS} =2V. Calculate i)C _{OX} ii)C _{OV} iii)C _{gs} iv)C _{gd} v)C _{sb} vi)C _{db}	L3	6
		OR		
Q.04	a	Derive the expression for low frequency response of a common source amplifier.	L1,L2	8
	b	It is desired to design a phase-shift oscillator (Self biased JEFT amplifier) using a JEFT having $g_m=5000\mu s$, $r_d=40k\Omega$, and feedback circuit resistance of R=10k Ω . Select the value of 'C' for oscillator operation at 1 kHz and R _D for a gain A=40 to ensure oscillator action.	L3	4

18EC42

Max. Marks: 100

18EC42

			4	
	c	With a neat diagram explain working of a crystal oscillator. Explain series and parallel resonance action with equivalent circuits and relevant expressions. A crystal has L=0.334H, C=0.065pF, C_M =1pF and R=5.5k Ω . Calculate its series and parallel resonant frequency.	L3	8
		Module-3		
Q. 05	a	With a neat block diagram explain the working of a negative feedback amplifier. How is the overall gain affected in these amplifiers?	L1,L2	8
	b	Determine the voltage gain, input and output impedance with feedback for a voltage series feedback amplifier having A= -100, R _i =10k Ω , R _o =20k Ω for a feedback of i) β =1 and ii) β = -0.5	L3	8
	с	Draw the four basic negative-feedback topologies.	L1	4
		OR		
Q. 06	a	Define power amplifiers and list the types of power amplifiers based on the location of Q point, conduction angle, efficiency and applications.	L1,L2	8
	b	Prove that the maximum conversion efficiency of a transformer coupled Class A amplifier is 50%.	L2	6
	c	Calculate the efficiency of a transformer coupled Class B amplifier for a supply of 12V and peak output voltage of 6V.	L3	2
	d	Explain in brief the working of a Class C power amplifier.		4
		Module-4		
Q. 07	a	How does negative feedback affect the performances of an inverting amplifier using opamp? Derive the relevant expressions for Gain, input resistance and output resistance.	L2	8
	b	The opamp 714C is connected as an inverting amplifier with $R_1=1k\Omega$ and $R_F=4.7k\Omega$. Compute the closed loop parameters: A_F , R_{IF} , R_{OF} , $f_{F.}$. Given A=400000, $R_i=33M\Omega$ and $R_O=60\Omega$; supply voltages are $\pm 13V$; Max output voltage swing = $\pm 13V$, Unity gain bandwidth = 0.6MHz.	L3	6
	c	With a neat circuit diagram explain the opamp based inverting scaling amplifier and averaging circuit with relevant expressions for the output.	L1,L2	6
	-	OR		
Q. 08	a	What is an instrumentation amplifier? What are its applications? With a neat circuit diagram explain an instrumentation amplifier using a transducer bridge.	L1,L2	10
	b	Draw the circuit and waveforms for an inverting Schmitt Trigger using opamp, with relevant expressions.	L1	4
	c	For an inverting Schmitt Trigger circuit $R_1 = 15K\Omega$; $R_2 = 1K\Omega$ and $V_{in} = 10V_{p-pp}$ sine wave. The saturation voltages are $\pm 14V$ and $V_{ref} = 2 V$. i) Determine the threshold voltages V_{ut} and V_{lt} . ii) Find the value of Hysteresis voltage V_{hy} . Module-5	L3	6
0.00	6		1.2	•
Q. 09	a	Explain the working of a Successive Approximation type of ADC.	L2	8
	b	Explain with a neat circuit diagram, the working of a small signal half wave precision rectifier using an Opamp.	L2	4
	С	What is R-2R network type DAC? Explain with relevant expressions.	L1,L2	8
		OR		
Q. 10	a	Explain the working of a second order high pass Butterworth filter with a neat circuit diagram and frequency response. Write the relevant design equations.	L1,L2	6
	b	Explain the operation of 555 timer as a Monostable multivibrator with	L1,L2	8

Γ	с	In an astable multivibrator $R_A = 2.2 \text{ K}\Omega$; $R_B = 3.9 \text{ K}\Omega$ and	L3	6
		$C = 0.1 \mu F$. Determine the positive pulse width T_c and negative pulse		
		th T_d and free running frequency 'f _o '.		

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.