Model Question Paper-2 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

 Subject Title: Analog Circuits
TIME: 03 Hours

Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module -1			*Bloom's Taxonomy Level	Marks
Q. 01	a	Derive the following relations with respect to small signal operation of BJT: i)Transconductance ii) Voltage gain	L2	6
	b	A BJT having $\beta=100$ is biased at a DC collector current of 1 mA . Find the value of g_{m}, r_{e} and r_{Π} at the bias point.	L3	6
	c	With the small signal equivalent model of MOSFET, derive an expression for voltage gain and transconductance.	L2	8
OR				
Q. 02	a	Derive the following relations with respect to small signal operation of BJT: i)Input resistance ii) Emitter resistance Also derive the relation between emitter and base resistance.	L2	8
	b	A MOSFET is to operate at $\mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$ and is to have $\mathrm{g}_{\mathrm{m}}=1 \mathrm{~mA} / \mathrm{V}$. If $\mathrm{k}_{\mathrm{n}}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$. Find the required W/L ratio and the overdrive voltage.	L3	6
	c	State the disadvantage of fixed V_{GS} biasing technique and explain how stability of operating point is achieved in drain to gate feedback resistor biasing technique in a MOSFET amplifier	L1, L2	6
Module-2				
Q. 03	a	With a neat circuit diagram and ac equivalent circuit, derive the expressions for $\mathrm{R}_{\mathrm{in}}, \mathrm{A}_{\mathrm{vo}}, \mathrm{A}_{\mathrm{v}}$ and R_{o} for a Source follower.	L2	8
	b	A CS amplifier utilizes a MOSFET biased at $\mathrm{I}_{\mathrm{D}}=0.25 \mathrm{~mA}$ with $\mathrm{V}_{\mathrm{ov}}=0.25 \mathrm{~V}$ and $R_{D}=20 \mathrm{k} \Omega$. The device has $\mathrm{V}_{\mathrm{A}}=50 \mathrm{~V}$. The amplifier is fed with a source having $\mathrm{R}_{\mathrm{sig}}=100 \mathrm{k} \boldsymbol{\Omega}$, and a $20-\mathrm{k} \boldsymbol{\Omega}$ load is connected to the output. Find $\mathrm{R}_{\mathrm{in}}, \mathrm{A}_{\mathrm{vo}}, \mathrm{A}_{\mathrm{v}}$ and R_{0} and G_{v}. If to maintain reasonable linearity, the peak of the input sine-wave signal is limited to 10% of $\left(2 \mathrm{~V}_{\text {ov }}\right)$ what is the peak of the sinewave voltage at the output?	L3	8
	c	In an RC Phase shift oscillator, $\mathrm{R}=200 \mathrm{k} \boldsymbol{\Omega}$ and $\mathrm{C}=200 \mathrm{pF}$. Find the frequency of the BJT based oscillator.	L3	4
OR				
Q. 04	a	Draw and explain the complete frequency response of a common source amplifier. Derive the expression for its lower cutoff frequency	L1,L2	10
	b	Find the midband gain A_{M}, and the upper 3-dB frequency f_{H} of a CS amplifier fed with a signal source having an internal resistance $\mathrm{R}_{\mathrm{sig}}=100 \mathrm{k} \Omega$. The amplifier has $\mathrm{R}_{\mathrm{G}}=4.7 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{D}}=\mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega,, \mathrm{g}_{\mathrm{m}}=1 \mathrm{~mA} / \mathrm{V}, \mathrm{r}_{\mathrm{o}}=150 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{gs}}=1 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{gd}}=0.4 \mathrm{pF}$	L3	6
	c	Explain the working of a Colpitts oscillator.	L1	4
Module-3				

Q. 05	a	With a neat block diagram explain the working of a Voltage series feedback amplifier. How are the overall gain, input and output impedances affected in these amplifiers?	L1,L2	8
	b	Show how Gain can be desensitized and bandwidth increased with the application of negative feedback.	L3	8
	c	Draw the circuit of a practical Voltage Shunt (or transresistance) feedback amplifier and explain its working.	L2	4
OR				
Q. 06	a	Explain a Class B Output stage. Prove that the maximum conversion efficiency of a Class B transformer coupled amplifier is 78.5%.	L1,L2	8
	b	A transformer coupled class A power amplifier supplies to an $80 \boldsymbol{\Omega}$ load connected across the secondary of a step down transformer having a turns ratio $5: 1$. Determine the maximum power output for a zero signal collector current of 120 mA .	L3	6
	c	What is cross over distortion? How can it be eliminated?	L2	6
Module-4				
Q. 07	a	Explain with a neat diagram and relevant expressions, an opamp voltage series feedback amplifier	L1,L2	8
	b	Explain the following: 1) Virtual ground 2) Opamp AC amplifier	L1	6
	c	For an opamp non-inverting amplifier using 741 IC with $R_{L}=1 \mathrm{~K} \Omega$ and $\mathrm{R}_{\mathrm{F}}=10 \mathrm{~K} \Omega, \mathrm{~A}=200,000 ; \mathrm{Ri}=2 \mathrm{M} \Omega, \mathrm{Ro}=75 \Omega$, fo $=5 \mathrm{~Hz}$; supply voltages $\pm 15 \mathrm{~V}$, output voltage swing $= \pm 13 \mathrm{~V}$, Compute $\mathrm{A}_{\mathrm{F}}, \mathrm{R}_{\mathrm{if}}, \mathrm{R}_{\mathrm{of}}, \mathrm{f}_{\mathrm{F}}$.	L3	6
OR				
Q. 08	a	Explain an Instrumentation amplifier using transducer bridge with relevant equations.	L1	8
	b	Explain the basic comparator circuit using an opamp. How can this circuit be used in an application as a zero crossing detector?	L1	6
	c	For a Schmitt trigger circuit; $\mathrm{R}_{1}=150 \Omega$ and $\mathrm{R}_{2}=68 \mathrm{k} \Omega, \mathrm{v}_{\text {in }}=500 \mathrm{mVp}$-p sine wave and saturation voltages are $= \pm 14 \mathrm{~V}$. Determine the threshold voltages V_{ut} and V_{It} Draw the output waveforms.	L3	6
Module-5				
Q. 09	a	Explain the operation of 4-bit R-2R DAC with neat circuit. For the R-2R DAC, with $\mathrm{R}=10 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{F}}=20 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}$, determine the output voltage when the inputs $\mathrm{b} 0=\mathrm{b} 1=5 \mathrm{~V}$ and $\mathrm{b} 2=\mathrm{b} 3=0 \mathrm{~V}$	L2,L3	8
	b	Explain the operation of a Successive -approximation ADC with neat circuit diagram.	L2	6
	c	Draw the circuit and frequency response of a first order low pass filter. Design a first order low pass filter to have a cutoff frequency of 1 kHz with a passband gain of 2 .	L1,L3	6
OR				
Q. 10	a	Draw and Explain the circuit and frequency response of a wide band-pass filter.	L1	6
	b	Explain the operation of a monostable multivibrator with relevant diagrams and waveforms.	L1,L2	8

	c	In the astable multivibrator $\mathrm{R}_{\mathrm{A}}=2.2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{B}}=3.9 \mathrm{k} \Omega$ and $\mathrm{C}=0.1 \mu \mathrm{~F}$. Determine the positive pulse width t_{c}, negative pulse width t_{d} and free-running frequency.	L 3	6

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be $^{\text {B }}$ attained by every bit of questions.

