Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination
Engineering Statistics \& Linear Algebra
TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE. 02. Use of Normalized Gaussian Random Variables table is permitted.

Module -1								*Bloom's Taxonomy Level	Marks
Q. 01	a	The PDF for the random variable Z is $f_{Z}(z)=\left\{\begin{array}{lll} \frac{1}{6 \sqrt{z}} & ; & 0<z<9 \\ 0 & ; & \text { Otherwise } \end{array}\right.$ What are (i) the mean (ii) the mean of the square, and (iii) the variance of the random variable Z ?						L1, L2	5
	b	Given the data in the following table, (i) Plot the PDF and the CDF of the discrete random variable X . (ii) Write expressions for PDF and CDF using unit-delta functions and unit - step functions.						L3	5
	C	Define an exponential random variable. Obtain the characteristic function of an exponential random variable and using the characteristic function derive its mean and variance.						L1, L3	10
OR									
Q. 02	a	It is given that $E[X]=36.5$ and that $E\left[X^{2}\right]=1432.3$ (i) Find the standard deviation of X . (ii) If $Y=4 X-500$, find the mean and variance of Y.						L3	4
	b	Define a Poisson random variable. Obtain the characteristic function of a Poisson random variable and hence find mean and variance using the characteristic function.						L1, L3	10
	C	The random variable X is uniformly distributed between 0 and 4. The random variable Y is obtained from X using $y=(x-2)^{2}$. What are the CDF and PDF for Y?						L2, L3	6
Module-2									
Q. 03	a	The joint PDF $f_{X Y}(x, y)=c$, a constant, when $(0<x<3)$ and $(0<y<4)$ and is 0 otherwise. (i) What is the value of the constant c ? (ii) What are the PDFs for X and Y ? (iii) What is $F_{X Y}(x, y)$ when $(0<x<3)$ and $(0<y<4)$? (iv) What are $F_{X Y}(x, \infty)$ and $F_{X Y}(\infty, y)$? (v) Are X and Y independent?						L1, L2, L3	10
	b	Define correlation coefficient of random variables X and Y . Show that it is bounded by limits ± 1.						L1, L2	5

18EC44

18EC44

	c	If $u=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right], v=\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]$ and $w=\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right]$ then show that u, v, w are pairwise orthogonal vectors. Find lengths of u, v, w and find orthonormal vectors u_{1}, v_{1}, w_{1} from vectors u, v, w.	L2, L3	10
OR				
Q. 08	a	Apply Gram-Schmidt process to $a=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], b=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ and $c=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and write the result in the form of $\mathrm{A}=\mathrm{QR}$.	L3	8
	b	Find the dimension and basis for four fundamental subspaces for $A=\left[\begin{array}{llll} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{array}\right]$	L3	8
	c	Find the projection of b onto the column space of A. $A=\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \\ -2 & 4 \end{array}\right] \text { and } b=\left[\begin{array}{l} 1 \\ 2 \\ 7 \end{array}\right]$	L3	4
		Module-5		
Q. 09	a	(i) Reduce the matrix A to U and find $\operatorname{det}(\mathrm{A})$ using pivots of A . $A=\left[\begin{array}{lll} 1 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 3 \end{array}\right]$ (ii) By applying row operations to produce an upper triangular matrix U , compute the $\operatorname{det}(A)$. $A=\left[\begin{array}{cccc} 1 & 2 & 3 & 0 \\ 2 & 6 & 6 & 1 \\ -1 & 0 & 0 & 3 \\ 0 & 2 & 0 & 7 \end{array}\right]$	L3	6
	b	Find the eigen values and eigen vectors of matrix A . $A=\left[\begin{array}{ll} 1 & 4 \\ 2 & 3 \end{array}\right]$	L3	6
	c	Factor the matrix A into $A=X \Lambda X^{-1}$ using diagonalization and hence find A^{3}. $A=\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right]$	L3	8
		OR		
Q. 10	a	Factorize the matrix A into $\begin{aligned} & A=U \Sigma V^{T} \text { using SVD. } \\ & A=\left[\begin{array}{lll} 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right] \end{aligned}$	L3, L4	8
	b	(i) What is a positive definite matrix? Mention the methods of testing positive definiteness. (ii) Check the following matrix for positive definiteness. $S_{1}=\left(\begin{array}{ll} 5 & 6 \\ 6 & 7 \end{array}\right)$	L1, L2	6
	c	Find an orthogonal matrix Q that diagonalizes the following symmetric matrix. $S=\left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{array}\right]$	L3	6

