Page 01 of 03

Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Engineering Statistics & Linear Algebra

TIME: 03 Hours

Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE. 02. Use of Normalized Gaussian Random Variables table is permitted.

		Module -1	*Bloom's Taxonomy Level	Marks
Q.01	a	The PDF for the random variable Z is $f_Z(z) = \begin{cases} \frac{1}{6\sqrt{z}} ; & 0 < z < 9 \\ 0 ; & Otherwise \end{cases}$ What are (i) the mean (ii) the mean of the square, and (iii) the variance of the random variable Z?	L1, L2	5
	b	Given the data in the following table,k12345 x_k 2.13.24.85.46.9 $P(x_k)$ 0.210.180.200.220.19(i)Plot the PDF and the CDF of the discrete random variable X.(ii)Write expressions for PDF and CDF using unit-delta functions and unit – step functions.	L3	5
	c	Define an exponential random variable. Obtain the characteristic function of an exponential random variable and using the characteristic function derive its mean and variance.	L1, L3	10
Q.02	a	It is given that $E[X] = 36.5$ and that $E[X^2] = 1432.3$ (i) Find the standard deviation of X. (ii) If $Y = 4X - 500$, find the mean and variance of Y.	L3	4
	b	Define a Poisson random variable. Obtain the characteristic function of a Poisson random variable and hence find mean and variance using the characteristic function.	L1, L3	10
	c	The random variable X is uniformly distributed between 0 and 4. The random variable Y is obtained from X using $y = (x - 2)^2$. What are the CDF and PDF for Y?	L2, L3	6
0.03	0	Module-2 The joint PDE $f_{-}(x, y) = c$ a constant, when $(0 < x < 3)$ and		
Q. 03	a	(1) The joint PDF $f_{XY}(x, y) = c$, a constant, when $(0 < x < 3)$ and (0 < y < 4) and is 0 otherwise. (i) What is the value of the constant c? (ii) What are the PDFs for X and Y? (iii) What is $F_{XY}(x, y)$ when $(0 < x < 3)$ and $(0 < y < 4)$? (iv) What are $F_{XY}(x, \infty)$ and $F_{XY}(\infty, y)$? (v) Are X and Y independent?	L1, L2, L3	10
	b	Define correlation coefficient of random variables X and Y. Show that it is bounded by limits ± 1 .	L1, L2	5

18EC44

Max. Marks: 100

18EC44

	c	X is a random variable with $\mu_X = 4$ and $\sigma_X = 5$. Y is a random variable		
		with $\mu_Y = 6$, and $\sigma_Y = 7$. The correlation coefficient is 0.7.	L3	5
		If $U = 3X + 2Y$, what are Var[U], Cov [UX] and Cov [UY]?		
0.04		OR 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
Q.04	а	X is a random variable uniformly distributed between 0 and 3. Y is a	1010	0
		random variable, independent of X, uniformly distributed between 1.2 and 2.1 W, $X + X$. What is the DDE for W2	L2, L3	8
	h	+2 and -2 . $W = X + Y$. What is the PDF for W?		
	D	The fandom variable Z is uniformity distributed between 0 and 1. The random variable X is obtained from Z as follows: $V = 3.57 \pm 5.25$		
		One hundred independent realizations of Y are averaged:		
		$V = \frac{1}{1} \sum Y_i$	L3. L4	8
		$100 \sum_{i=1}^{-1}$	- 7	_
		(i) Estimate the probability $P(V \le 7.1)$		
		(ii) If 1000 independent calculations of V are performed, approximately		
		how many of these calculated values for V would be less than 7.1?		
	c	Explain briefly the following random variables.		
		(i) Chi-Square Random Variable	L1	4
		(ii) Student's t Random Variable		
		Module-3		
Q. 05	а	With the help of an example, define Random Process and discuss	L1	5
		distributions and density functions of a random process.		
	b	A random process is described by		
		$X(t) = A\cos(\omega_c t + \varphi + \theta)$		
		where A, ω_c and φ are constants and where θ is a random variable	L2, L3	8
		uniformly distributed between $\pm \pi$. Is $X(t)$ wide-sense stationary? If not,		
		function for the random process?		
	C	Define the autocorrelation function (ACE) of a random process and		
	C	discuss its properties	L1, L2	7
		OR		
0.06	a	X(t) and $Y(t)$ are independent, jointly wide-sense stationary random		
C		processes given by,		-
		$X(t) = A\cos(\omega_1 t + \theta_1)$ and $Y(t) = B\cos(\omega_2 t + \theta_2)$.	L3	6
		If $W(t) = X(t)Y(t)$ then find the ACF $R_W(\tau)$.		
	b	Assume that the data in the following table are obtained from a		
		windowed sample function obtained from an ergodic random process.		
		Estimate the ACF for $\tau = 0, 2 ms$ and $4 ms$, where $\Delta t = 2 ms$.	L2, L3	6
		x(t) 1.5 2.1 1.0 2.2 -1.6 -2.0 -2.5 2.5 1.6 -1.8		
		k 0 1 2 3 4 5 6 7 8 9		
	c	Suppose that the PSD input to a linear system is $S_X(\omega) = K$. The cross-		
		correlation of the input $X(t)$ with the output $Y(t)$ of the linear system is		
		found to be	L3. L4	8
		$R_{YY}(\tau) = K \{ e^{-\tau} + 3e^{-2\tau}; \tau \ge 0 \}$	20,21	U
		$ \tau < 0 $		
		What is the power filter function $ H(j\omega) ^{2}$?		
0.07	6	NIOQUIE-4		
Q. 07	a	Describe the column space and the null space of the following		
		[1 -1] $[1 -1]$ $[1 -1]$	L2, L3	4
		$ (1) A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} (ii) B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 3 \end{bmatrix} $		
	h	Determine whether the vectors (1, 3, 2), (2, 1, 3) and (3, 2, 1) are	 	
		linearly dependent or independent.	L3	6

18EC44

	c	If $u = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$, $v = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$ and $w = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$ then show that u, v, w are pairwise orthogonal vectors. Find lengths of u, v, w and find orthonormal vectors u_1, v_1, w_1 from vectors u, v, w .	L2, L3	10
		OR		
Q. 08	a	Apply Gram-Schmidt process to $a = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, b = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$ and $c = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and write the result in the form of A = QR.	L3	8
	b	Find the dimension and basis for four fundamental subspaces for $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$	L3	8
	c	Find the projection of <i>b</i> onto the column space of A. $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -2 & 4 \end{bmatrix} \text{ and } b = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$	L3	4
0.00	r –	Module-5		
Q. 09	a	(i) Reduce the matrix A to 0 and find <i>det</i> (A) using proofs of A. $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 3 \end{bmatrix}$ (ii) By applying row operations to produce an upper triangular matrix U, compute the <i>det</i> (A). $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 6 & 6 & 1 \\ -1 & 0 & 0 & 3 \\ 0 & 2 & 0 & 7 \end{bmatrix}$	L3	6
	b	Find the eigen values and eigen vectors of matrix A. $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$	L3	6
	c	Factor the matrix A into $A = X\Lambda X^{-1}$ using diagonalization and hence find A^3 . $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$	L3	8
0.10	r –	OR		
Q. 10	a	Factorize the matrix A into $A = U\Sigma V^2$ using SVD. $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$	L3, L4	8
	b	 (i) What is a positive definite matrix? Mention the methods of testing positive definiteness. (ii) Check the following matrix for positive definiteness. S₁ =	L1, L2	6
	c	Find an orthogonal matrix Q that diagonalizes the following symmetric matrix. $S = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{bmatrix}$	L3	6