Model Question Paper-2 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Engineering Statistics & Linear Algebra

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**. 02. Use of Normalized Gaussian Random Variables table is permitted.

		Module -1	*Bloom's Taxonomy Level	Marks
Q.01	a	 Define a random variable and briefly discuss the following terms associated with random variables. (i) Sample space (ii) Distribution Function (iii) Probability Mass Function (iv) Probability Density Function 	L1	5
	b	The probability distribution of a Discrete Random Variable (DRV) is as shown below. k -0.25 0 1 2 3.75 $P(X = k)$ 0.2 c 0.4 0.1 2c Find (i) the value of c. (ii) $P(x \le 0)$ (iii) $P\{(X > 1)/(X \ge 0)\}$	L2, L3	7
	c	Define Binomial distribution. Obtain the characteristic function of a binomial random variable and using the characteristic function derive its mean and variance.	L1, L3	8
		OR		
Q.02	a	The random variable X is uniformly distributed between 0 and 2. If $y = 3x^3$, then find the PDF for Y.	L3	5
	b	Let X be an exponential random variable with CDF $F_X(x) = \begin{cases} 1 - \exp\left(-\frac{x}{3}\right), & x \ge 0\\ 0, & x < 0 \end{cases}$ And let B be the event $B = \{x > 2\}$. What are $f_{\{X B\}}(x), \mu_{\{X B\}}(x)$ and $\sigma_{(X B)}^2$?	L3, L4	7
	с	Define Laplace distribution. Obtain the characteristic function of a Laplace random variable and using the characteristic function derive its mean and variance.	L1, L2, L3	8
Module-2				
Q. 03	a	A bivariate PDF for the DRVs X and Y is $0.2 \delta(x)\delta(y) + 0.3 \delta(x-1)\delta(y) + 0.3 \delta(x)\delta(y-1) + c \delta(x-1)\delta(y-1)$. (i) What is the value of the constant c? (ii) What are the PDFs for X and Y? (iii) What is $F_{XY}(x, y)$ when $(0 < x < 1)$ and $(0 < y < 1)$? (iv) What are marginal CDFs of X and Y? (v) Are X and Y independent?	L2, L3	5
	b	X and Y are correlated random variables with a correlation coefficient of 0.7, mean of X is 5, variance of X is 36, mean of Y is 16, variance of Y is 150. The random variables U and V are obtained using	L2, L3, L4	7

		U = X + cY and $V = X - cY$		
		What values can c have if U and V are uncorrelated?		
	с	Briefly explain the following random variables (RV).		
		(i) Chi-Square RV		
		(ii) Student's t RV	L1	8
		(iii) Cauchy RV		
		(iv) Rayleigh RV		
		OR		
Q.04	a	A DRV Y has the PDF $f_{y}(y) = 0.5 \delta(y) + 0.5 \delta(y-3)$	1110	~
		$U = Y_1 + Y_2$, where the Y's are independent. What is the PDF for U?	L1, L2	5
	b	Shown in Fig. Q4c is a region in the x, y plane where the bivariate pdf		
		$f_{xy}(x, y) = c$, elsewhere, the pdf is 0.		
		y		
		(-2,2) (2,2)		
		x	1415	7
			L4, L3	/
		(-2,-2)		
		Fig. Q4c		
		(i) What value must c have?		
		(ii) Evaluate $F_{XY}(1,1)$.		
		(iii) Find the pdfs of X and Y.		
	с	Define Central Limit Theorem and show that the sum of the two	1113	8
		independent Gaussian random variables is also Gaussian.	L1, L5	0
		Module-3		
Q. 05	a	With the help of an example, define Random Process and discuss the		
		terms Strict-Sense Stationary (SSS) and Wide-Sense Stationary (WSS)	L1	5
		associated with a random process.		
	b	A random process is described by		
		$X(t) = A\cos(\omega_c t + \theta) + B$		
		Where A, B, ω_c are constants and where θ is a random variable	1213	7
		uniformly distributed between $\pm \pi$. Is $X(t)$ wide-sense stationary? If not,	L2, L3	,
		then why not? If so, then what are the mean and the autocorrelation		
		function for the random process?		
	с	Define the Autocorrelation function (ACF) of the random process X(t).		
		And prove the following statements.		
		(i) ACF is an even function.	L1, L2	8
		(ii) If $X(t)$ is periodic with period T, then in the WSS case, the ACF is		
		also periodic with period T.		
	1	OR		
Q. 06	a	X(t) and $Y(t)$ are independent, jointly wide-sense stationary random		
	1	processes given by,	13	5
	1	$X(t) = A\cos(\omega_1 t + \theta_1)$ and $Y(t) = B\cos(\omega_2 t + \theta_2)$.	L5	5
		If $W(t) = X(t)Y(t)$ then find the ACF $R_W(\tau)$.		
	b	Assume that the data in the following table are obtained from a		
	1	windowed sample function obtained from an ergodic random process.	L2, L3	7
	1	Estimate the ACF for $\tau = 0, 3 ms$ and $6 ms$, where $\Delta t = 3 ms$.		

		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	с	Suppose that the PSD input to a linear system is $S_X(\omega) = K$. The cross- correlation of the input X(t) with the output Y(t) of the linear system is found to be $R_{XY}(\tau) = K \begin{cases} 3e^{-\tau} + e^{-2\tau}; & \tau \ge 0\\ 0; & \tau < 0 \end{cases}$ What is the power filter function $ H(j\omega) ^2$?	L3, L4	8
		Module-4		
Q. 07	a	Let $I: V \to \mathbb{R}$ be the integral mapping $I(v) = \int_0^1 v(t) dt$. Show that <i>I</i> is a linear transformation.	L2, L3	5
	b	Determine whether or not each of the following forms a basis in \mathbb{R}^3 . $x_1 = (2, 2, 1), x_2 = (1, 3, 7) \text{ and } x_3 = (1, 2, 2).$	L3, L4	7
	c	If $u = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$, $v = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$ and $w = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$ then show that u, v, w are pairwise orthogonal vectors. Find lengths of u, v, w and find orthonormal vectors u_1, v_1, w_1 from vectors u, v, w .	L2, L3	8
0.00	1	OR		
Q. 08	a h	Define Vector Subspaces and explain the four fundamental subspaces. Solve $Ax = b$ by logst squares and find $x = A\hat{x}$ if	LI	5
	D	Solve $Ax = b$ by least squares and find $p = Ax$, if $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	L3	7
	c	Apply Gram-Schmidt process to $a = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ and $c = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ and write the result in the form of A = QR.	L3	8
	1	Module-5		
Q. 09	a	(i) Reduce the matrix A to U and find det (A) using pivots of A. $A = \begin{bmatrix} 2 & 5 & 3 \\ 1 & 2 & 4 \\ -1 & 3 & 6 \end{bmatrix}$ (ii) By applying row operations to produce an upper triangular matrix U, compute the det (A). $A = \begin{bmatrix} 3 & 1 & 4 & 2 \\ 1 & 5 & 2 & 6 \\ 2 & 3 & 7 & 1 \\ 4 & 1 & 2 & 3 \end{bmatrix}$	L3	5
	b	Find the eigen values and eigen vectors of matrix A and A^{-1} $A = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} -\frac{1}{2} & 1 \\ \frac{1}{2} & 0 \end{bmatrix}$ Check the trace. Comment on the results.	L3	7
	С	Diagonalize the matrix A and hence find A^4 . $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	L3	8
		OR		

Q. 10	a	If a 4 × 4 matrix has det(A) = $\frac{1}{2}$ then find the following. (i) det (2A) (ii) det(-A) (iii) det(A ²) (iv) det (A ⁻¹)	L2, L3	5
	b	Test to see if $A^T A$ is positive definite $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix}$	L4	7
	с	Compute $A^T A$ and AA^T and their eigen values & unit eigen vectors for V and U. Then check $AV = U\Sigma$. $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix}$	L4	8