# Visvesvaraya Technological University, Belagavi <br> MODEL QUESTION PAPER <br> 3rd Semester, B.E (CBCS 2017-18 Scheme) EC/TC <br> Course: 17EC34- Digital Electronics, Set no. 1 

Time: 3 Hours
Max. Marks: 100
Note: (i) Answer Five full questions selecting any one full question from each Module.
(ii) Question on a topic of a Module may appear in either its $1^{\text {st }}$ or/and $2^{\text {nd }}$ question.

## Module-1

1 a. Design a combinational logic circuit which takes two, 2-bit binary numbers as its input and generates an output equal to 1 , when the sum of the two number is odd.( $\mathbf{0 6}$ Marks)
b. Convert the given boolean function into
i) $f(a, b, c)=(a+b)(b+c)$ minterm canonical form
ii) $f(a, b, c)=a+a c(b+c)$ maxterm canonical form
(06 Marks)
c. Find all the prime implicants and essential prime implicants for the given function using k-
mapmethd. $\quad \mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Sigma \mathrm{m}(0,3,6,7,8,9,10)+\mathrm{dc}(2,5,11,12,15)$
(08 Marks)

## OR

2 a . Define the following terms:
Minterm, Maxterm, CSOP, CPOS, POS. (05 Marks)
b. Simplify the given function using K-map method.
$\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})=\Sigma \mathrm{m}(3,7,11,12,13,14,15,16,18)+\mathrm{dc}((24,25,26,27,28,29,30,31) \quad$ (05 Marks)
c. Find the prime implicants and essential prime implicants using Quine-McCusky method and verify the result using k-map.

$$
\mathrm{F}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})=\Sigma \mathrm{m}(7,9,12,13,14,15)+\mathrm{dc}(4,11)
$$

(10 Marks)

## Module-2

3 a. What is magnitude comparator? Design a two bit digital comparator by writing TT, relevant expression and logic diagram.
(10 Marks)
b. Implement the following functions using 3:8 decoder(IC-74138)
i) $\mathrm{f}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\pi \mathrm{M}(2,4,5,7,9,10,13,14)$
ii) $\mathrm{f}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Sigma \mathrm{m}(1,3,5,8,12,14,15)(10$ Marks $)$

## OR

4 a. Explain Carry look ahead adder with neat diagram and relevant expressions. And also briefly explain how it is better than parallel adder.( $\mathbf{1 0}$ Marks)
b. Implement $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Sigma \mathrm{m}(0,1,5,6,10,12,14,15)$ using
i) 8:1 MUX with a,b,c as select lines.
ii) $4: 1$ MUX with $a, b$ as select lines.
(10 Marks)

## Module-3

5 a . What is flip-flop. Discuss working principle of SR flip-flop with its TT. Also highlight role of SR latch in switch debouncer circuit.
(10 Marks)
b. What is significance of edge triggering? Explain working of negative edge triggered D flipflop with their functional table and waveforms.(10 Marks)

1 of 2
OR
6 a. Explain the working of Master-Slave JK flip-flop with functional table and timing diagram.
Show how race around condition is overcome.
(12 Marks)
b. Obtain characteristic equation for the following flip-flops.
i) $J K f / f \quad$ ii) $S R f / f$
(08 Marks)

## Module-4

7 a. Explain Universal Shift Register with the help of logic diagram, mode control table and symbol.(10 Marks)
b. Explain the working of 4-bit Johnson counter using positive edge triggered D flip-flop, also draw the timing diagram. What is the modulus of this counter?
(10 Marks)

## OR

8 a. Design a Synchronous Mod-6 counter using JK flip-flop.
(10 Marks)
b. Explain the working of 4-bit binary ripple up counter using negative edge triggered flipflop. Also draw the timing diagram.
(10 Marks)

## Module-5

9 a. Explain Mealy and Moore models of clocked synchronous sequential circuits with necessary block diagrams.
(10 Marks)
b. Design a cyclic Mod-8 synchronous binary counter using JK flip-flop. Give state diagram, transition table and excitation table.
(10 Marks)

## OR

10 a. Construct mealy state diagram that will detect input sequence 10110 , when input pattern is detected, z is asserted high. Give state diagram for each state.
(10 Marks)
b. Analyze the following sequential circuit shown in Fig Q10(b), and obtain
i) Flip-flop input and output equation ii) Transition equation
iii) Transition table iv) State table v) Draw the state diagram.
(10 Marks)


Fig Q10(b)
2 of 2

