Visvesvaraya Technological University, Belagavi
 MODEL QUESTION PAPER

3rd Semester, B.E (CBCS 2017-18 Scheme) EC/TC
Course: 17EC34- Digital Electronics, Set no. 2
Time: 3 Hours
Max. Marks: 100
Note: (i) Answer Five full questions selecting any one full question from each Module.
(ii) Question on a topic of a Module may appear in either its $1^{\text {st }}$ or/and $2^{\text {nd }}$ question.

		MODULE-1	MARKS
1	a.	Define the following (i)Essential prime implicant (ii)cannonical SOP (iii)cannonical POS (iv) incompletely specified functions	4M
	b.	Using K-map determine the minimal POS Expression and realize the simplified expression using NAND gates $\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\pi(0,1,4,5,6,7,9,14)+\mathrm{D}(13,15)$	8M
	c.	Simplify the following Expression using K-map $\mathrm{T}=\bar{v} \bar{w}+\bar{v} \mathrm{w} \bar{y}+\mathrm{v} \bar{w} \mathrm{z}$	8M
		OR	
2	a.	Simplify the given Boolean Function using Quine-Mcluskey method $\mathrm{y}=\sum m(1,3,8,6,10,12,14)+\mathrm{dc}(7,13)$	8M
	b.	Convert the following Boolean function into mintermcannonical form $y=f(a, b, c)=(a+b)(a+c)$	4M
	c.	Design a 3input, 1 output minimal Combinational network that has a logical-1 output when the majority of its inputs are logic-1 and has a logic- 0 when majority of inputs are logic- 0	8M
		MODULE-2	
3	a.	Implement the following function using 74138 Decoder a) $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\pi \mathrm{M}(2,3,4,5,7)$ b) $\mathrm{f} 2(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum m(1,3,5)$	4M
	b.	What is Magnitude Comparator? Design 2 bit Comparator by writing TT, Expression and logic diagram	10M
	c.	What are the problems with basic Encoder? Explain 8 to 3 priority Encoder with basic Encoder	6M
		OR	

4	a.	Implement $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum m(0,1,5,6,7,10,15)$ using 8:1 MUX with a, b, c as select lines	5M
	b.	Explain 4bit Carry look ahead Adder with neat diagram and Relevant Expressions	10M
		MODULE-3	
5	a.	Explain the Operation of a Switch debouncer built using SR latch with the help of circuits and waveforms	8M
	b.	Explain MS JK flip-flop with the help of circuit diagram and waveforms	8M
	c.	Define (i) Setup Time (ii) Hold Time (iii) Propagation Delay (iv) Function Table	4M
		OR	
6	a.	Explain Positive Edge Triggered D Flip-flop with the help of circuit diagram and waveforms	8M
	b.	Obtain the Characteristic Equations for the following Flip-flops (i) JK (ii) SR	6 M
	c.	Explain 0's and 1's Catching problem in Pulse Triggered MS JK Flip-flop with the help of timing diagram	6M
		MODULE-4	
7	a.	Design 3 bit synchronous Up Counter using JK Flip-flop write Exitation table transition table and Logic diagram	10M
	b	Describe the working of Universal Shift Register with the help of register operation and mode control table	10M
		OR	
8	a.	Explain the working Principle of 4 bit Ripple Binary Counter using the Edge Triggered T Flip-flop. Also draw the Timming Diagram	8M
	b.	Explain the MOD 8 Twisted Ring Counter with the help of Logic Diagram, Truth Table	4M
	c.	Write State Diagram for MOD 5 self correcting counter and briefly explain. The sequence is 000,001,101,110,111,000	8M
		MODULE-5	

