17EC33

Visvesvaraya Technological University, Belagavi

MODEL QUESTION PAPER

3rd Semester, B.E (CBCS 2017-18 Scheme)EC/TC

Course: 17EC33- Analog Electronics, Set no. 1

Time: 3 Hours

Max. Marks: 100

Note: (i) Answer Five full questions selecting any one full question from each Module. (ii) Question on a topic of a Module may appear in either its 1st or/and 2nd question.

		Module-1	Marks
1	a.	Obtain the expressions for Z_I , Z_O and A_V for the emitter follower configuration transistor circuit.	7
	b.	For the voltage divider bias circuit with, $R_1=39K\Omega$, $R_2=4.7K\Omega$, $R_C=3.9K\Omega$ and $R_E = 1.2K\Omega$, find r_e , Z_i , Z_o and A_v . The values of $\beta=100$ and $r_o=50K\Omega$.	7
	С	Draw and explain the hybrid- π model of transistor in CE configuration mentioning the significance of each component.	6
		OR	
2	a.	With the relevant expressions and circuits, obtain the re model for the common emitter transistor configuration.	6
	b.	Given $I_E=2.5$ mA, $h_{fe}=140$, $h_{0e}=20\mu$ S and $h_{ob}=0.5\mu$ S. Obtain the common emitter hybrid equivalent circuit.	5
	С	Draw and explain the hybrid- π model of transistor in CE configuration mentioning the significance of each component.	5
	d	Draw the Darlington connection and explain its features.	4
		Module-2	
3	a.	With cross sectional view and transfer characteristics explain the working of Depletion type MOSFET.	7
	b.	Describe Shockley's equation for JFET. Obtain and plot the transfer characteristics for n channel JFET with I_{DSS} = 8mA and V_P = -5V.	6
	С	Derive an expression for output resistance and voltage gain of fixed bias FET amplifier	7
		OR	
4	a.	Explain the basic operation and characteristics of enhancement type MOSFET .	7
	b	Define transconductance of a JFET. Obtain the expression and show the dependency of transconductance with V_{GS} and I_D .	5
	С	The self bias configuration has V_{GS} =-2.6V, I_D =2.6mA, and I_{DSS} =8mA, V_P =-6V,	8
		y_{os} =20µS. Determine g_m , Z_i , Z_O and A_V with and without Cs.	

		Module-3	
5	a.	Derive the expressions for low frequency cut-offs for a voltage divider transistor	8
		configuration with R_{s} and R_{L}	
	b.	For the circuit shown in Fig. Q5(b), with C_{Wi} = 3 pF, C_{Wo} = 5 pF, C_{gd} = 4 pF, C_{gs} = 6 pF,	12
		C_{ds} = 1 pF and I_{DSS} = 6 mA, V_P = -6V, r_d = $\infty \Omega$.	
		i) Deterimeg _m and A _v	
		ii) Determine f _{Hi} and f _{Ho}	
		iii) Sketch the frequency response for the high frequency region using Bode	
		plot and determine the cut-off frequency.	
		VDD $3k\Omega$ $Q1$ $4.7\mu F$ $3.9k\Omega$ V_{5} $T_{1.2k\Omega}$ $Fig.Q5(b)$	
_		OR	
6	а.	What is Miller effect? Derive expression for Miller capacitance for an amplifier.	8
	b	For the circuit shown in Fig.6(b) with β =100 and r_0 =40k Ω .	12
		i) Determine r _e and A _{vmid}	
		ii) Calculate Z _i	
		iii) Determine f_{Ls} , f_{Lc} and f_{LE} and determine the lower Cut-off frequency	
		iv) Sketch the asymptotes of the Bode plot.	

	b.	With neat circuit diagram and necessary expressions, explain the working of practical	6		
		FET phase shift oscillator.			
	C.	With neat circuit diagram and waveform explain the working of UJT oscillator.	7		
	Module-5				
9	a.	What is voltage regulator? With a neat circuit explain series voltage regulator using	8		
		transistors.			
	b.	What are the different types of power amplifiers? Show that The maximum	7		
		conversion gain of transformer coupled class A amplifier is 50%.			
	С	Calculate the harmonic distortion components for an output signal having	5		
		fundamental amplitude of 2.5 V, second harmonic amplitude of 0.25 V, third			
		harmonic amplitude of 0.1 V, and fourth harmonic amplitude of 0.05 V.			
		OR			
10	a.	With a neat circuit diagram and waveforms derive an expression for conversion gain	8		
		of Class B push pull amplifier.			
	b	Derive the expression for second harmonic distortion.	6		
	С	Draw the circuit diagram of a basic transistor shunt regulator and write the expression for	6		
		output voltage. Determine the regulated voltage and circuit currents: I_{z},I_{c} and I_{L} if Rs=120 $\Omega,$			
		RL=100 Ω , V _z =8.2V and V _i =22V.			
