17EC36

Visvesvaraya Technological University, Belagavi

MODEL QUESTION PAPER

3rd Semester, B.E (CBCS 2017-18 Scheme) EC/TC

Course: 17EC36 - Engineering Electromagnetics, Set no.1

		MODULE – 1	
1.	a.	State and explain coulomb's law of force between two point charges in vector form.	8
		Also derive an expression for totalForce due to n number of point charges.	
	b.	Point charges of 50nc each are located at A(1,0,0) B(-1,0,0), C(0,-1,0) and	7
		D(0,-1,0)m. Find the total force on a charge at A and also find Electric Field	
		Intensity.	
	c.	Let $\vec{D} = 5r^2 \vec{a}_r \text{ mc/m}^2$ for r $\leq 0.08 \text{ m}$ and $\vec{D} = \frac{0.205}{r^2} \vec{a}_r \mu \text{c/m}^2$ for r $> 0.08 \text{ m}$. Find ρ_v for	5
		i)r = 0.06m $ii) r = 0.1m$	
		OR	
2.	a.	Derive an expression for Electric field intensity due to infinite line charge.	8
	b.	Define Electric Field Intensity and Electric Flux Density and also establish the relationship between them.	6
	с.	Calculate the divergence of vector D at the points specified using Cartesian and	6
		cylindrical coordinates:	
		1. $\vec{D} = \frac{1}{z^2} [10xyz.a_x + 5x^2z.a_y + (2z^3 - 5x^2y)a_z] c/m^2$ at point P(2,3,5)	
		2. $\vec{D} = 5z^2 . a_r + 10rz . a_z$ at p(3, 45°,5)	
		MODULE – 2	
3.	a.	State and Prove Gauss's Law.	6
	b.	What is Convection Current density ? Derive relationship between J and ρ_v . Also obtain Continuity of Current equation.	8
	с.	Given the current density J=10r2a _r -4rcos ² Φa_{Φ} mA/m ² : a)find the current density at	6
		$P(r=3, \Phi=300, Z=2)$ b) determine the total current flowing outward through the	
		circular band r=3 ,0< Φ <2 π , 2 <z <2.8<="" td=""><td></td></z>	
	1	OR	<u> </u>
4.	a.	Derive an expression for energy expended in moving a point charge in an electric field.	5
	b.	Given $D=30e^{-r}a_r-2za_z$ C/m ² , verify Divergence theorem for the volume enclosed by r=2 and z=5.	10

	c.	Calculate the work done in moving a 4C charge from $B(1,0,0)$ to A (0,2,0) along the path y=2-2x, z=0 in the field E:	5
		i)5a _x V/m ii)5xa _x V/m	
		MODULE – 3	
5.	a.	Using Gauss Law derive Poisson's and Laplace equation. Represent Laplacian in Cartesian, Cylindrical and Spherical co-ordinates.	7
	b.	Using laplace's equation, find capacitance per unit length of two concentric sphere with inner radius 'a'm and outer radius 'b'm with boundary conditions $V=V_0$ at r=a and $V=0$ at r=b,b>a.	10
	c.	Determine whether or not the following potential satisfy the Laplace's equation. $V=2x^2-4y^2+z^2$	3
		OR	
6.	a.	State and prove Stroke's theorem.	
	b.	Derive an expression for magnetic field intensity due to straight conductor of finite length.	7
	c.	A circuit carrying a direct current of 5A form a regular hexagon inscribed in a circle of radius 1m. Calculate the magnetic flux density at the centre of current hexagon. Assume medium to be free space.	6
		MODULE - 4	
7.	a.	Briefly explain force between differential current elements.	8 Marks
	b.	A conductor 4m long lies along the y axis with a current of 10 amps in the a_y direction.Find the force on the conductor if the field is B=0.005a Tesla.	5
	c.	Discuss the boundary conditions at the interface between two media of different permeabilities.	7
		OR	
8.	a.	Obtain an expression for Lorentz force equation.	5
	b.	Define Magnetization and Magnetic susceptibility.Derive relationship between Magnetic susceptibility and relative permeability.	7
	c.	Two differential current elements $I_1\Delta L_1=3x10^{-6}a_y$ A-m at A(1,0,0) and $I_2\Delta L_2=3x10^{-6}(-0.5a_x+0.4a_y+0.3a_z)$ A-m at B(2,2,2,) are located in free space. Find the vector force exerted on i) $I_2\Delta L_2$ by $I_1\Delta L_1$ ii) $I_1\Delta L_1$ by $I_2\Delta L_2$	8
	1	MODULE – 5	
9.	a.	Derive an expression for displacement current density using Ampere's circuital Law.	7 Marks
	b.	State and Explain Poynting's theorem. Within a contain region $c = 10^{-11}$ F/m and $u = 10^{-5}$ H/m	8 Marks
	c.	Within a certain region, $\varepsilon = 10^{-11}$ F/m and $\mu = 10-5$ H/m. If, $B_x = 2 \times 10^{-4} \cos 10^5 t \sin 10^{-3}$ y T, use $\nabla \mathbf{H} = \varepsilon \frac{\partial E}{\partial t}$ to find E.	5 Marks
		$\frac{\partial t}{\partial t} = \frac{\partial t}{\partial t} = \frac{\partial t}{\partial t}$	
10.	a.	List Maxwell's equation in point and integral form.	4 Marks
- 01	b.	For an Electromagnetic wave propagating in free space prove that $\frac{E}{H} = \eta$.	10 Marks
	c.	A 160 M Hz plane wave propagating in free space prove that $_{H}^{-1}$ $\mu_{r}^{-1} = 1$. A 160 M Hz plane wave penetrates through aluminium of conductivity $10^5 \text{O/m}, \varepsilon_{r}^{-1} = \mu_{r}^{-1} = 1$. Calculate the skin depth and also depth at which the wave amplitude decreases to 13.5% of its initial value.	06 Marks