17EC36

Visvesvaraya Technological University, Belagavi

MODEL QUESTION PAPER

3rd Semester, B.E (CBCS 2017-18 Scheme)EC/TC

Course: 17EC36- Engineering Electromagnetics, Set no.2

Time: 3 Hours

Max. Marks: 100

Note: (i) Answer Five full questions selecting any one full question from each Module. (ii) Question on a topic of a Module may appear in either its 1st or/and 2nd question.

		Module-1	Marks
1	a.	State and explain Coulomb's law in vector form. Mention the units of each	06
		parameter used in the expression.	
	b.	Point charge $Q_1 = 300 \mu C$ located at (1, -1, 3)m experiences a force $F = 8a_x - 8a_y - 4a_z N$	06
		due to a charge Q_2 at(3, -3, 2)m.Find Q_2 .	
	с.	Find the total charge inside each of the volume indicated	
		a) $\rho_v = 10z^2 e^{-0.1x} \sin \pi y$, $-1 \le x \le 2$; $0 \le x \le 1$; $3 \le x \le 3.6$; b) $\rho_v = 4xyz^2$ $0 \le \rho \le 2$; $0 \le \phi \le \pi/2$; $0 \le z \le 3$;	08
		b) $\rho_v = 4xyz^2$ $0 \le \rho \le 2; 0 \le \phi \le \pi/2; 0 \le z \le 3;$ OR	
2	a.	Derive the expression for 'E' due to an infinite uniformly charged line of density	08
-		\mathbf{p}_{l} C/m at a point P.	
	b.	Two uniform line charges of density 8 nC/m are located in a plane y = 0 at x = ± 4m .	06
		Find 'E' at P (0, 4, 10) m .	
	с.	Define Electric flux Density 'D'. Find the D at P(6, 8, -10) caused by	
		i) a point charge of 30 mC at origin.	06
		ii) a uniform line charge of $\rho_{I=}$ 40 μ C/m on z-axis.	
		iii) A uniform surface charge of density $\rho_s = 57.2 \mu\text{C/m}^2$ on the plane x =9.	
		Module-2	
3	а.	State and Prove Integral form of Gauss law.	06
	b.	A charge of $+\mathbf{Q}$ C is distributed uniformly throughout the volume of a sphere of	
		radius R. Find E everywhere and plot variation of E with radius r.	06
	с.	Given that $D = (5r^2/4)a_rC/m^2$ in spherical coordinates evaluate both sides of	08
		divergence theorem for the volume enclosed between r = 1m and r = 2m.	
		OR	
4	a.	Derive the expression for scalar electric potential for a point charge at any point P.	06
	b.	Find the work done in moving a 5µC charge from origin to P(2, -1, 4) through the	08
		electric field E = $2xyz a_z + x^2 z a_y + x^2 y a_z V/m$ via the path : Straight line segments (0,	
		0, 0) to (2, 0, 0) to (2, -1, 0) to (2, -1, 4) .	
L			
-	с.	Given Current density $J = 10\rho^2 z a_{\rho} - 4\rho \cos^2 \phi a_{\phi} mA/m^2$	
		a. Find J at P(3, 30', 2)	
		b. Determine the total current flowing outward through a circular band	06
		$\rho = 3; \ 0 \le \phi \le 2\pi; \ 2 \le z \le 2.8$	
		Module-3	

5	a.	Derive the expressions for Poisson's and Laplace's equations.	04
•			0.
	b.	Using Laplace Equation derive the expression for capacitance of a cylindrical capacitor. Assume the potential is a function of \mathbf{p} only. The boundary conditions are $V = V_0$ at $p = a$ and $V = 0$ at $p = b$, $b > a$.	08
	c.	Conducting planes at $\phi = 10^{\circ}$ and $\phi = 0^{\circ}$ in cylindrical coordinates have voltages 75V	
	•••	and $\mathbf{0V}$ respectively. Obtain the expression for Electric flux density \mathbf{D} in the region	08
		between the planes which contains a material for which $\epsilon_r = 1.65$.	
		OR	
6	a.	Using Biot-Savart's law Find an expression for the magnetic field intensity at any point due to a finite length current element of length 'L' meters.	08
	b.	In cylindrical coordinates a magnetic field is $H = (2\rho - \rho^2)a_{\phi}A/m$ for $0 \le \rho \le 1$	
		a. Determine the current density J	06
		b. What total current passes through a surface $z = 0, 0 \le \rho \le 1$.	
	с.	Find the total magnetic flux crossing a surface $\phi = \pi/2$, $1 \le \rho \le 2$ and $0 \le z \le 5$ due to	06
		vector magnetic potential A = $(-\rho^2/4)$ a _z web/m.	
		Module-4	
7	a.	Derive Lorentz force equation and Derive the expression for the force on a	08
		differential current element placed in a magnetic field.	
	b.	Derive the expression for the magnetic force between two differential current	06
		elements	
	c.	Given $P_1(5, 2, 1)$, $P_2(1, 8, 5)$, $I_1dL_1 = -3 a_yA.m$ and $I_2dL_2 = -4 a_zA.m$. find the force on I_1dL_1 due to I_2dL_2 and find the force on I_2dL_2 due to I_1dL_1 .	06
		OR OR	
8	a.	Derive expressions for the boundary conditions at the interface between two	08
		magnetic media of different permeabilities for B, M, and H.	
	b.	Let $\mu_1 = 5 \mu H/m$ in region A where x < 0 and $\mu_2 = 20\mu H/m$ in region B where x > 0. If	
		there is a surface current density $K = 150 a_y - 200 a_z A/m$ at $x = 0$ and if $H = 300 a_x - 100 a_z A/m$	08
		400 a_y + 500 a_z A/m find: i) $ H_{tA} $ ii) $ H_{NA} $, iii) $ H_{tB} $, iv) $ H_{NB} $.	
	с.	Given a ferrite material which is operating in a linear mode with B = 0.05 T and μ_r =	04
		50. Calculate χ_m , M and H.	
		Module-5	
9	a.	State and explain Faraday's law in point form and integral form.	06
	b.	What is the inconsistency of Ampere's law with continuity equation? How it was modified by Maxwell?	06
	с.	Given E = $\mathbf{E}_m \sin (\mathbf{wt} - \beta \mathbf{z}) \mathbf{a}_y \mathbf{V/m}$ in free space, Find D, B, H. sketch E & H at t = 0.	08
		OR	
10	a.	Starting from Maxwell's equations show that the intrinsic impedance of a perfect	10
		dielectric $\eta = \frac{ E }{ H } = \sqrt{\frac{\mu}{\epsilon}}$ and show that its value in free space is 120 π . Also show	
		that E & H are perpendicular to each other in free space.	
	b.	A wave propagating in a lossless dielectric medium has the components:	10
		$\mathbf{E} = 500\cos(10^7 t - \beta z)\mathbf{a}_{\rm x} \mathrm{V/m}$	
		$\mathbf{H} = 1.1\cos(\mathbf{10^7t} - \beta z)\mathbf{a}_y \mathbf{A/m}$	
	1	If the wave is travelling at $v = 0.5C$, find μ_r , ε_r , β , λ , z.	
