17EC35

Visvesvaraya Technological University, Belagavi MODEL QUESTION PAPER 3rd Semester, B.E (CBCS 2017-18 Scheme)EC/TC Course: 17EC35- Network Analysis, *Set No. 1*

Time: 3 Hours

Max. Marks: 100

Note: (i) Answer Five full questions selecting any one full question from each Module. (ii) Question on a topic of a Module may appear in either its 1st or/and 2nd question.

		Module-1	Marks
1	a.	Derive the expression for i) Δ to Y transformation ii)Y to Δ transformation.	10
	b.	Using source shifting and source transformation techniques, calculate V_{ad} for the circuit shown in Fig.Q1 (b).	10
		OR	
2	a.	Determine the equivalent resistance across the terminals a and b, shown in Fig.Q2(a) 4 kn 4 kn 6 kn 12 kn	5
	b.	Determine the value of v_x using mesh analysis for Fig.Q2 (a) shown	5
		below.	

	b.	Define ABCD parameters. Express y-parameters in terms of ABCD	10
		parameters.	
		OR	
10	a.	Define hybrid parameters (h). Express hybrid parameters in terms of	10
		impedance parameters (z).	
	b.	Define z parameters. Also, find z parameters for the network shown in	10
		Fig.Q10 (b).	
		Fig.Q10 (b).	
