Visvesvaraya Technological University, Belagavi MODEL QUESTION PAPER

3rd Semester, B.E (CBCS 2017-18 Scheme)EC/TC
Course: 17EC35- Network Analysis, Set No. 1

Note: (i) Answer Five full questions selecting any one full question from each Module.
(ii) Question on a topic of a Module may appear in either its $1^{\text {st }} \mathrm{or} /$ and $2^{\text {nd }}$ question.

		Module-1	Marks
1	a.	Derive the expression for i) Δ to Y transformation ii) Y to Δ transformation.	10
	b.	Using source shifting and source transformation techniques, calculate V_{ad} for the circuit shown in Fig.Q1 (b). Fig. Q1(b)	10
		OR	
2	a.	Determine the equivalent resistance across the terminals a and b, shown in Fig.Q2(a) Fig.Q2(a)	5
	b.	Determine the value ofv v_{x} using mesh analysis for Fig.Q2 (a) shown below.	5

	c.	For the network of Fig.Q2(b), determine the node voltage by nodal analysis. Fig.Q2(b)	10
		Module-2	
3	a.	State superposition theorem. In the circuit of Fig.Q3(a), use the superposition principle to determine the value of i_{x}. Fig.Q3(a)	10
	b.	Obtain the Thevenin's and Norton's equivalent for the network shown in Fig.Q3 (b).	10

		Fig.Q3(b)	
		OR	
4	a.	State and explain maximum power transfer theorem.	4
	b.	Using Millman's theorem, find I_{L} through R_{L} for the network shown in Fig.Q4 (b). Fig.Q4(b)	6
	c.	State and verify reciprocity theorem for the circuit shown in Fig.Q4(c). Fig.Q4(c)	10
		Module-3	
5	a.	State and prove initial value theorem and final value theorem.	10
	b.	In the circuit shown in Fig.Q5(b), the switch was inposition a forsufficiently long time to have achieved steady state.At $t=0$, the switch	10

		was changed from a tob. Determine I_{L} and V_{C}, their first and second order derivatives at $\mathrm{t}=0+$. Fig.Q5 (b)	
		OR	
6	a.	The switch in the network shown in Fig.Q6 (a) is closed at $\mathrm{t}=0$. Determine the voltage across capacitor. Use Laplace transform. Fig.Q6(a)	10
	b.	Determine the Laplace transform of the periodic saw tooth waveform of Fig. Q6 (b).Use gate function. Fig.Q6 (b)	10
		Module-4	
7	a.	What is resonance?Derive an expression for half power cutoff frequencies.	8
	b.	Define Q-factor, resonant frequency, selectivity and bandwidth.	4
	c.	A series RLC circuit consists of $R=10 \Omega, L=0.01 \mathrm{H}$ and $\mathrm{C}=0.01 \mu \mathrm{~F}$ is connected across a supply of 10 mV .Determine, i)f f_{0} ii) Q -factor iii)BW iv) f_{1}	8

		and $\left.f_{2} v\right) I_{0}$.	
		OR	
8	a.	Prove that for a series resonant circuit, the resonant frequency is the geometric mean of two half power frequencies.	4
	b.	Obtain the expression for the resonant frequency for the circuit shown in Fig. Q8 (b). Fig. Q8 (b)	8
	c.	Find the value of L for which the circuit shown in Fig.Q8(c) is resonant at a frequency of $\mathrm{w}=5000 \mathrm{rad} / \mathrm{sec}$. Fig.Q8(c)	8
		Module-5	
9	a.	Define y-parameters. Also, find y-parameters for the two-port -network shown in Fig.Q9 (a). Fig.Q9 (a).	10

| | b. | Define ABCD parameters. Express y-parameters in terms of ABCD
 parameters. | 10 |
| :--- | :--- | :--- | :---: | :---: |
| 10 | a.Define hybrid parameters (h). Express hybrid parameters in terms of
 impedance parameters (z). | 10 | |
| | b.Define z parameters. Also, find z parameters for the network shown in
 Fig.Q10 (b). | 10 | |
| | | | |

