Visvesvaraya Technological University, Belagavi

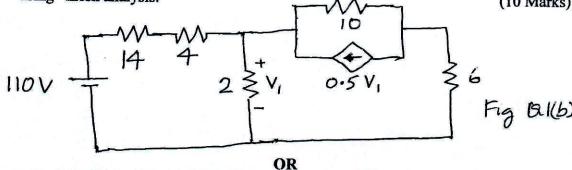
MODEL QUESTION PAPER

3rd Semester, B.E (CBCS) EC/TC

Course: Network Analysis

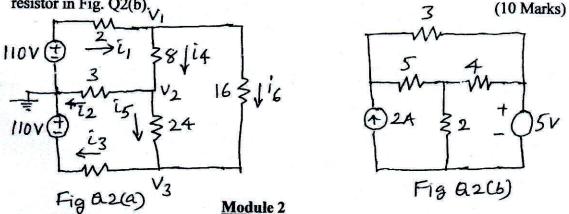
Time: 3 Hours

Max. Marks: 100

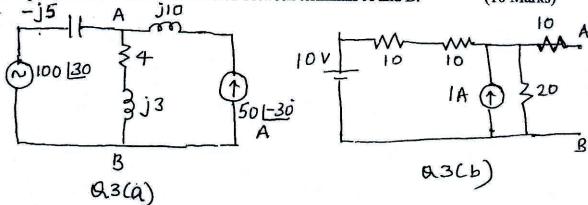

Note: (i) Answer Five full questions selecting any one full question from each Module.

(ii) Question on a topic of a Module may appear in either its 1st or 2nd question.

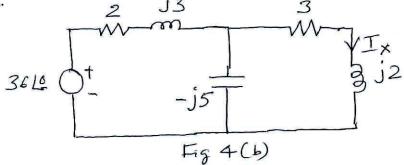
Module 1


a) Derive the expression for i) Δ to Y transformation ii) Y to Δ transformation.(10 Marks)

b) For the network shown in Fig. Q1(b), find the current through 4 Ω and 6 Ω resistors using mesh analysis. (10 Marks)

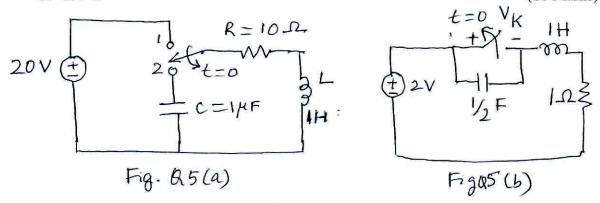

2 a) Using node voltage method, find V₁, V₂ & V₃ and branch currents i₁ to i₆. In Fig. Q2(a)

b) Using source transformation and source shifting techniques, find voltage across 2 Ω resistor in Fig. Q2(b).



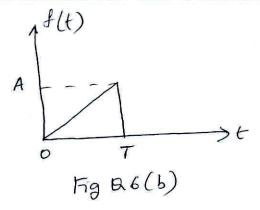
a) Using Superposition theorem, find the current through (4+j3) Ω for the circuit shown in Fig. Q3(a).
 (10 Marks)

b) For the circuit shown in Fig. Q3(b), find Thevenin's equivalent circuit and power dissipated in a 5 Ω resistor connected between terminals A and B. (10 Marks)


a) State and prove Maximum Power Transfer theorem for AC circuits. (10 Marks)
 b) Find the current I_x in the j2 Ω impedance in Fig. 4b and hence verify Reciprocity theorem.

Module 3

a) Refer the circuit in Fig. Q5(a). The switch K is changed from position 1 to position 2 at t = 0, steady state condition having been reached in position 1. Find the value of i, di/dt, d²i/dt² at t=0+. (10 Marks)

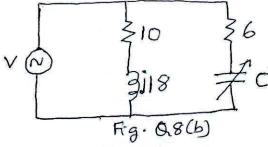

b) Refer the circuit shown in Fig. Q5(b). The circuit is in steady state with switch K closed. At t=0, the switch is opened. Determine the voltage across the switch V^K and dv^k at t=0⁺ (10 Marks)

OR

6 a) Obtain Laplace transform of i) Step function ii) Ramp function iii) Impulse function. (10 Marks)

b) Obtain the Laplace Transform of saw tooth waveform shown in Fig. Q6(b). (10 Marks)

Module 4

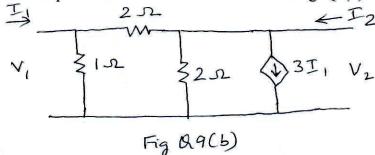

- a) Derive the equation for two half power frequencies f₁ and f₂ and also bandwidth of a series resonant circuit.
 (10 Marks)
 - b) A series RLC circuit consists of R = 10 Ω , L=0.01H and C = 0.01 μ F is connected across
 - a supply of 10mV. Determine i) f₀ ii) Q factor iii) BW iv) f₁ and f₂ v) I₀

(10 Marks)

OR

- 8 a) Derive the expressions of a resonance frequency and dynamic impedance of a parallel resonance circuit. (10 Marks)
 - b) Find the value of C in Fig. Q8(b) for which the circuit resonates at $f_r = 750$ HZ.

(10 Marks)


Module 5

9 a) Derive the expression of Z - parameters in terms of h - parameters.

(10 Marks)

b) Find the ABCD parameters for the network shown in Fig. Q9(b).

(10 Marks)

OR

- 10 a) The bridges T-RC network is shown in Fig. Q10(a). For the values given, find Z parameters. (10 Marks)
 - b) Determine the admittance parameters of the T network shown in Fig. Q10(b)

HI M

IH

Fig Q10(b)