Model Question Paper (CBCS) with effect from 2015-16

USN

15MAT11

First/Second Semester B.E. Degree(CBCS)Examination

Engineering Mathematics-I

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1			
1	a.	Find the nth derivative of $\frac{x^2+4x+1}{x^3+2x^2-x-2}$	(04 Marks)
	b.	Find the angle between the radius vector and the tangent for	the curve
		$r = \alpha(1 + \cos\theta)$ and also find the slope of the tangent at $\theta = \frac{\pi}{2}$	(04 Marks)
	c.	Find the angle of intersection between the curves $r^2 \sin 2\theta = 4$ and $r^2 = 16 \sin 2\theta$.	(04 Marks)
	d.	Obtain the Pedal equation of the curve $\frac{2a}{r} = 1 + cos\theta$	(04 Marks)
		OR	
2	a.	If $y = e^{msin^{-4}x}$, prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (m^2 + n^2)y_n = 0$	(06 Marks)
	b.	Find the pedal equation, $r^n = a^n \cos \theta$	(05 Marks)
	c.	Show that the radius of curvature of the curve $x^3 + y^3 = 3axy$ at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ is $-\frac{3a}{8\sqrt{2}}$	(05 Marks)
Module-2			
3		Expand $\log_e x$ in powers of $(x-1)$ up to fourth degree term.	(04 Marks)
	b.	Evaluate $\lim_{x\to 0} \left(\frac{a^{\varkappa} + b^{\varkappa} + c^{\varkappa}}{3}\right)^{1/\varkappa}$	(04 Marks)
	c.	If $z = f(x + ct) + g(x - ct)$ prove that $\frac{\partial^2 z}{\partial t^2} = C^2 \frac{\partial^2 z}{\partial x^2}$	(04 Marks)
	d.	If $u = \cos^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = -2\cot u$	(04 Marks)
	OR		
4	a.	Prove that $\sqrt{1 + \sin 2x} = 1 + x - \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{24} + \cdots$	(06 Marks)
	b.	If $u = f(x-y, y-z, z-x)$ then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$	(05 Marks)
	c.	If $u = x + y + z$, $v = x^2 + y^2 + z^2$, $w = xy + yz + zx$, then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$	(05 Marks)
Module-3			
5	a.	A particle moves along the curve $x=1-t^3$, $y=1+t^2$ and $z=2t-5$, find the ve	locity and
		acceleration. Also find the components of velocity and acceleration at t=1 in th	-
	1.	2i+j+2k.	(08 Marks)
	D.	Find the constants a, b, c so that the vector field $\vec{F} = (x + 2y + az)\hat{i} + (bx - 3y - z)\hat{j} + (4x + cy + 2z)\hat{k}$ is irrotational.	(09 Manka)
		F = (x + 2y + dz)i + (bx - 3y - z)j + (4x + cy + 2z)k is inotational. OR	(08 Marks)
6	a.	If $\vec{u} = x^2\hat{i} + y^2\hat{j} + z^2\hat{k}$ and $\vec{v} = yz\hat{i} + xz\hat{j} + xy\hat{k}$ then prove that $\vec{u} \times \vec{v}$ is a solenoid	dal vector.
			(08 Marks)
	b.	Find $div\vec{F}$ and $curl\vec{F}$ if $\vec{F} = grad(x^3 + y^3 + z^3 - 3xyz)$.	(08 Marks)

First/Sec

15MAT11

(06 Marks)

- a. Obtain the reduction formula for $\int_0^{\pi/2} \sin^n x \, dx$. 7
 - b. Solve $(y^2 e^{xy^2} + 4x^3)dx + (2xy e^{xy^2} 3y^2)dy = 0$. (05 Marks)
 - c. Find the Orthogonal trajectories of the family of cardioids $r = a(1 + \cos\theta)$ where a is the parameter. (05 Marks)

OR

- a. Evaluate $\int_0^{\pi/6} \cos^4 3\theta \sin^3 6\theta \, d\theta$. 8 (06 Marks) b. Solve $x \frac{dy}{dx} + y = x^3 y^6$ (05 Marks)
 - c. If a substance cools from 370k to 330k in 10minutes, when the temperature of the surrounding air is 290k. Find the temperature of the substance after 40 minutes. (05 Marks)

Module-5

9 a. Solve the following system of equations by Gauss elimination method

> x + 2y + z = 32x + 3y + 3z = 10

$$3x - y + 3z = 13$$

e power method to find the largest eigen value and the corresponding eigen v

b. Use vector of the matrix taking **[0 1]**' as initial eigen vector

 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ c. Show that the transformation $y_1 = x - y + z$

 $y_2 = 3x - y + 2z$ $y_{\rm R} = 2x - 2y + 3z$

is non-singular. Find the inverse transformation

OR

10 a. Solve the following system of equations by Gauss-Seidel method

20x + y - 2z = 173x + 20y - z = -18

2x - 3y + 20z = 25

b. Reduce the following matrix to the diagonal form

 $\begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$ (05 Marks)

c. Reduce the quadratic form 2xy + 2xz - 2yz to the canonical form by orthogonal transformation. (06 Marks)

> * * * * * 2 of 2

(06 Marks)

(05 Marks)

(05 Marks)

(05 Marks)