

First/Second Semester B.E. Degree(CBCS)Examination

Engineering Mathematics-I

Time: 3 hrs .
Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. Find the nth derivative of $\frac{x^{2}+4 x+1}{x^{3}+2 x^{2}-x-2}$
(04 Marks)
b. Find the angle between the radius vector and the tangent for the curve $r=\alpha(1+\cos \theta)$ and also find the slope of the tangent at $\theta=\frac{\pi}{3}$
(04 Marks)
c. Find the angle of intersection between the curves $r^{2} \sin 2 \theta=4$ and $r^{2}=16 \sin 2 \theta$.
d. Obtain the Pedal equation of the curve $\frac{2 a}{r}=1+\cos \theta$

2 a. If $y=e^{m s i n^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{m+1}-\left(m^{2}+n^{2}\right) y_{n}=0$ (06 Marks)
b. Find the pedal equation, $\mathrm{r}^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \cos n \theta$
(05 Marks)
c. Show that the radius of curvature of the curve $\mathrm{x}^{3}+\mathrm{y}^{3}=3 \mathrm{axy}$ at $\left(\frac{3 a}{2}, \frac{3 a}{2}\right)$ is $-\frac{3 a}{a \sqrt{2}}$

Module-2

3 a. Expand $\log _{g} x$ in powers of $(x-1)$ up to fourth degree term.
(04 Marks)
b. Evaluate $\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{1 / x}$
(04 Marks)
c. If $z=f(x+c t)+g(x-c t)$ prove that $\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}$
(04 Marks)
d. If $\boldsymbol{u}=\cos ^{-1}\left(\frac{x^{3}+y^{3}}{x+y}\right)$, then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-2 \cot u$

4 a. Prove that $\sqrt{1+\sin 2 x}=1+x-\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{24}+\cdots \ldots \ldots \ldots$
(06 Marks)
b. If $\mathrm{u}=\mathrm{f}(\mathrm{x}-\mathrm{y}, \mathrm{y}-\mathrm{z}, \mathrm{z}-\mathrm{x})$ then prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
(05 Marks)
c. If $u=x+y+z, v=x^{2}+y^{2}+z^{2}, w=x y+y z+z x$, then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$

Module-3

5 a. A particle moves along the curve $x=1-t^{3}, y=1+t^{2}$ and $z=2 t-5$, find the velocity and acceleration. Also find the components of velocity and acceleration at $\mathrm{t}=1$ in the direction $2 i+j+2 k$.
(08 Marks)
b. Find the constants $a_{,}, b_{p} c$ so that the vector field

$$
\vec{F}=(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{j}+(4 x+c y+2 z) \hat{k} \text { is irrotational. }
$$

(08 Marks)

OR

6 a. If $\overrightarrow{\mathrm{u}}=x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{k}$ and $\overrightarrow{\mathrm{v}}=y z \hat{i}+x z \hat{j}+x y \hat{k}$ then prove that $\vec{u} \times \vec{v}$ is a solenoidal vector.
b. Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ if $\vec{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$.
(08 Marks)

Module-4

7 a. Obtain the reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x$.
(06 Marks)
b. Solve $\left(y^{2} e^{x y^{2}}+4 x^{3}\right) d x+\left(2 x y e^{x y^{2}}-3 y^{2}\right) d y=0$.
c. Find the Orthogonal trajectories of the family of cardioids $r=a(1+\cos \theta)$ where a is the parameter.
(05 Marks)
OR
8 a. Evaluate $\int_{0}^{\pi / 6} \cos ^{4} 3 \theta \sin ^{3} 6 \theta d \theta$.
b. Solve $x \frac{d y}{d x}+y=x^{3} y^{6}$
c. If a substance cools from 370 k to 330 k in 10 minutes, when the temperature of the surrounding air is 290 k . Find the temperature of the substance after 40 minutes. (05 Marks)

Module-5

9 a. Solve the following system of equations by Gauss elimination method

$$
\begin{aligned}
& x+2 y+z=3 \\
& 2 x+3 y+3 z=10 \\
& 3 x-y+3 z=13
\end{aligned}
$$

(06 Marks)
b. Use power method to find the largest eigen value and the corresponding eigen vector of the matrix taking $\operatorname{lo} 1]^{\prime}$ as initial eigen vector

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

(05 Marks)
c. Show that the transformation $y_{1}=x-y+z$

$$
\begin{aligned}
& y_{2}=3 x-y+2 z \\
& y_{3}=2 x-2 y+3 z
\end{aligned}
$$

is non-singular. Find the inverse transformation
(05 Marks)

OR

10 a. Solve the following system of equations by Gauss-Seidel method

$$
\begin{align*}
& 20 x+y-2 z=17 \\
& 3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25 \tag{05Marks}
\end{align*}
$$

b. Reduce the following matrix to the diagonal form

$$
\left[\begin{array}{cc}
-19 & 7 \tag{05Marks}\\
-42 & 16
\end{array}\right]
$$

c. Reduce the quadratic form $2 x y+2 x z-2 y z$ to the canonical form by orthogonal transformation.
(06 Marks)

