

First/Second Semester B.E. Degree(CBCS)Examination

Engineering Physics

Time: 3 hrs .

Note: 1. Answer any FIVE full questions, choosing one full question from each module.
2. Physical Constants: Velocity of light, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, Planck's constant, $h=6.625 \times 10^{-34} \mathrm{JS}$; Mass of electron $m=9.1 \times 10^{-31} \mathrm{~kg}$; Boltzmann constant, $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$; Avagadro number, $\mathrm{N}_{\mathrm{A}}=6.02 \mathrm{X10}{ }^{26} / \mathrm{K}$ mole

Module-1

1 a. State Planck's law of black body radiation. Show that Planck's law reduces to Wien's law and Rayleigh Jeans law at lower and higher wavelength limits respectively.
(07 Marks)
b. Based on Heisenberg's uncertainty principle, show that electrons cannot exist within the nucleus.
(05 Marks)
c. Calculate the de Broglie wavelength of an electron moving with a K.E. of 50 Kev . ($\mathbf{0 4}$ Marks) OR
2 a. What is phase velocity and group velocity? Show that group velocity is equal to particle velocity.
(05 Marks)
b. Obtain the solution of Schrodinger's time independent wave equation for a particle in a one dimensional potential box of infinite height.
(07 Marks)
c. X-rays of wavelength $0.75 \AA$ are scattered from a target at an angle of 45°. Calculate the wavelength of scattered X-rays.
(04 Marks)

Module-2

3 a. What is Fermi level? Describe the variation of Fermi factor with temperature. ($\mathbf{0 5}$ Marks)
b. What is Meissner effect? Write a note on Type - I and Type - II super conductors. (07 Marks)
c. For intrinsic gallium arsenide, the room temperature electrical conductivity is $10^{-6} \mathrm{ohm}^{-1} \mathrm{~m}^{-1}$. The electron and hole mobilities are respectively $0.85 \mathrm{~m}^{2 /} \mathrm{Vs}$ and $0.04 \mathrm{~m}^{2 /}$ Vs. Calculate the intrinsic carrier concentration at room Temperature.
(04 Marks)

OR

4 a. Explain the BCS theory of super conductivity.
(05 Marks)
b. State law of mass action. Obtain an expression for the intrinsic carrier density. ($\mathbf{0 7}$ Marks)
c. Calculate the probability of finding an electron at an energy level 0.02 eV above Fermi level at 300 K .
(04 Marks)

Module-3

5 a. Explain the construction and working of carbon dioxide Laser.
(08 Marks)
b. Obtain an expression for the numerical aperture of an optical fiber.
(04 Marks)
c. The average power output of a laser beam of wavelength $6500 \AA$ is 10 mw . Find the number of photons emitted per second by the laser source.
(04 Marks)

OR

6 a. What is holography? Explain the principle and method of recording an image on a hologram.
b. Explain the different types of optical fibers.
c. An Optical signal propagating in a fiber retains 85% of input power after travelling a distance of 500 m in the fiber. Calculate the attenuation coefficient.
(04 Marks)

Module-4

7 a. Obtain an expression for the inter planar distance in a cubic crystal in terms of Miller indices.
(05 Marks)
b. What is atomic packing factor? Calculate the atomic packing factor for SC, FCC and BCC structures.
(07 Marks)
c. First order spectrum is formed when X - rays of wavelength $1.5 \AA$ is incident on a crystal at a glancing angle of 12°. Calculate the inter planar distance. If the Miller indices of the plane is (101), then find the lattice constant.
(04 Marks)

OR

8 a. With the help of a neat diagram explain the crystal structure of diamond and calculate its atomic packing factor.
b. Explain allotropy and polymorphism.
c. Draw the crystal planes (120) and (101) in a cubic crystal.

Module-5

9 a. What is Mach number? Explain the difference between ultra sonic and acoustic Waves?
b. What is a carbon nano tube? Explain how it is synthesized using pyrolysis method.
(06 Marks)
c. Explain the working of SEM with the help of a neat diagram.
(06 Marks)

OR

10 a. Briefly explain the Rankine - Hugonit shock equations.
(05 Marks)
b. Explain the Sol-Gel method of synthesis of nano materials.
(07 Marks)
c. Write a note on applications of carbon nano tubes.

