CBCS Scheme

1 of 2

4.	0	With suitable values explain the following:	
4.	a.	i) Effective height ii)Effective length iii) Effective thickness	
		iv) Slenderness ratio	(08 Marks)
	b.	An interior solid cross wall of a two-storey building is 100mm thick with a ceiling	(00 1014113)
	0.	height of 3.0m. It is constructed with a brick of compressive strength 10 N/mm^2 and	
		M1 type mortar. The walls are fully restrained both at top and bottom. Determine:	
		i) Effective thickness ii) Effective height iii) Slenderness ratio	A
		iv) Stress reduction factor assuming eccentricity $e = 0$ and v) Permissible	
		compressive stress.	(08 Marks)
		Module – 3	
5.	a.	Explain the steps involved in consideration of loads and design of masonry wall	
		with openings.	(06 Marks)
	b.	Design an interior solid wall of a two-storey building of storey height of each floor	
		of 3.0m. The wall is stiffened by 100mm thick intersecting walls at 3.6m centre to	
		centre. Also the wall has a door opening of size 900mm x 2000mm at a distance of	
		200mm from one of the walls. Assume the loading as follows:	
		i) Roof loading = 15 kN/m ii) Floor Loading = 12.5 kN/m	(10 Marks)
ć		OR	
6.	a.	Briefly discuss the steps involved in the design of axially loaded solid wall.	(08 Marks)
	b.	Design an interior cross wall of a two-storey building to carry 100mm thick RCC	
		slab with 3m ceiling height. The wall is unstiffened and it supports a 2.65m wide	
		slab. Live load on the roof = 1.5 kN/m^2 , Live load on floor = 2 kN/m^2 . Weight of 80mm thick terrace = 1.96 kN/m^2 , Weight of floor finish = 0.2 kN/m^2 .	(08 Marks)
		$\mathbf{Module - 4}$	(US Marks)
		<u>Ivroduie - 4</u>	
7.	a.	What are in-filled frames? Explain in brief.	(06 Marks)
	b.	A wall 20cm thick using modular bricks carries at the top a load of 80 kN/m, having	(00 1/14/16)
		a resultant eccentricity ratio of 1/12. Wall is 5m long between cross walls and is of	
		3.4m clear height between RCC slabs at top and bottom. What should be the	
		strength of brick and grade of mortar? Assume the joints are not raked.	(10 Marks)
		OR	
8.	a.	A wall 200mm thick carries an eccentric load of 90 kN/m at the top. The	
		eccentricity ratio is 1/10. The wall is 5.0m long between the cross walls. The clear	
		height between RC slabs is 3m. Design the masonry.	(10 Marks)
	b.	Explain with neat sketches different modes of failure of in-filled walls.	(06 Marks)
2		<u>Module - 5</u>	
9.	a.	Explain the design criteria of walls subjected to transverse loading.	(06 Marks)
	b.	Design a reinforced brick masonry lintel subjected to triangular loading for a	
		window opening of span 1.8m The thickness of the wall is 220mm and the height of	
Ċ	\sim	the brickwork above the lintel is 1.1m. Length of the wall on either side of the lintel	
		is more than half the span of the lintel. Use brickwork having characteristic strength of 10 N/mm ² and mild steel bars.	(10 Marks)
	/	OR	(10 Walks)
10.	a.	Give the assumptions and limitations of reinforced masonry.	(06 Marks)
<i>y</i> 10.	b.	Design a compound wall for the data given below:	(00 Marks)
	0.	Ht of wall=1.7m Coping at top=400mm x 100mm	
		Assume the wind pressure is equal to 1000 N/m ² and is uniformly distributed. The	
		SBC of soil is 120 kN/m^2 .	(10 Marks)
2 of 2			