CBCS Scheme

USN
15CV553

Fifth Semester B. E. Degree Examination
Masonry Structures
Time: 3hrs
Max Marks: 80
Note: 1) Answer FIVE full questions, choosing one full question from each module.
2) Use of IS 1905-1987 is permitted.
3) Assume missing data if any, suitably.

Module - 1

1. a. Discuss different types of classification of bricks.
b. Explain in detail the properties of mortar.
c. Explain qualities of good building stones with required standard values.

OR

2. a. State and briefly explain the factors affecting the compressive strength of masonry. (06 Marks)
b. The typical floor plan of a building is shown in Fig Q2b.
i) Floor to floor clear height is 3.0 m
ii) Slab thickness is 150 mm

Find the effective thickness, effective height, effective length and slenderness ratio for walls A, B and C.
(10 Marks)

Fig.Q2(b)

Module - 2

3. a. Explain following terms as applied to masonry structures:
i) Permissible compressive strength
ii) Stress reduction factor
iii) Shape reduction factor
b. Design an interior wall of a two-storey building to carry 100 mm thick RCC slab with 3.0 m ceiling height. The wall is unstiffened and it supports a 2.65 m wide slab.
Live load on the roof $=1.5 \mathrm{kN} / \mathrm{m}^{2}$ Live load on floor $=2.0 \mathrm{kN} / \mathrm{m}^{2}$
Weight of terrace $=1.96 \mathrm{kN} / \mathrm{m}^{2}$

$$
\text { Wt of floor finish }=0.8 \mathrm{kN} / \mathrm{m}^{2}
$$

4. a. With suitable values explain the following:
i) Effective height
ii)Effective length
iii) Effective thickness
iv) Slenderness ratio
b. An interior solid cross wall of a two-storey building is 100 mm thick with a ceiling height of 3.0 m . It is constructed with a brick of compressive strength $10 \mathrm{~N} / \mathrm{mm}^{2}$ and M1 type mortar. The walls are fully restrained both at top and bottom. Determine:
i) Effective thickness
ii) Effective height
iii) Slenderness ratio
iv) Stress reduction factor assuming eccentricity $\mathrm{e}=0$ and v) Permissible compressive stress.

Module - 3

5. a. Explain the steps involved in consideration of loads and design of masonry wall with openings.
b. Design an interior solid wall of a two-storey building of storey height of each floor of 3.0 m . The wall is stiffened by 100 mm thick intersecting walls at 3.6 m centre to centre. Also the wall has a door opening of size $900 \mathrm{~mm} \times 2000 \mathrm{~mm}$ at a distance of 200mm from one of the walls. Assume the loading as follows:
i) Roof loading $=15 \mathrm{kN} / \mathrm{m}$ ii) Floor Loading $=12.5 \mathrm{kN} / \mathrm{m}$

OR
6. a. Briefly discuss the steps involved in the design of axially loaded solid wall.
b. Design an interior cross wall of a two-storey building to carry 100 mm thick RCC slab with 3 m ceiling height. The wall is unstiffened and it supports a 2.65 m wide slab. Live load on the roof $=1.5 \mathrm{kN} / \mathrm{m}^{2}, \quad$ Live load on floor $=2 \mathrm{kN} / \mathrm{m}^{2}$. Weight of 80 mm thick terrace $=1.96 \mathrm{kN} / \mathrm{m}^{2}$, Weight of floor finish $=0.2 \mathrm{kN} / \mathrm{m}^{2}$.

Module-4

7. a. What are in-filled frames? Explain in brief.
(06 Marks)
b. A wall 20 cm thick using modular brieks carries at the top a load of $80 \mathrm{kN} / \mathrm{m}$, having a resultant eccentricity ratio of $1 / 12$. Wall is 5 m long between cross walls and is of 3.4 m clear height between RCC slabs at top and bottom. What should be the strength of brick and grade of mortar? Assume the joints are not raked.
(10 Marks)
OR
8. a. A wall 200 mm thick carries an eccentric load of $90 \mathrm{kN} / \mathrm{m}$ at the top. The eccentricity ratio is $1 / 10$. The wall is 5.0 m long between the cross walls. The clear height between RC slabs is 3 m . Design the masonry.
(10 Marks)
b. Explain with neat sketches different modes of failure of in-filled walls.

Module - 5

9. a. Explain the design criteria of walls subjected to transverse loading.
b. Design a reinforced brick masonry lintel subjected to triangular loading for a window opening of span 1.8 m The thickness of the wall is 220 mm and the height of the brickwork above the lintel is 1.1 m . Length of the wall on either side of the lintel is more than half the span of the lintel. Use brickwork having characteristic strength of $10 \mathrm{~N} / \mathrm{mm}^{2}$ and mild steel bars.

OR
10. a. Give the assumptions and limitations of reinforced masonry.
(06 Marks)
b. Design a compound wall for the data given below:

Ht of wall $=1.7 \mathrm{~m} \quad$ Coping at top $=400 \mathrm{~mm} \times 100 \mathrm{~mm}$
Assume the wind pressure is equal to $1000 \mathrm{~N} / \mathrm{m}^{2}$ and is uniformly distributed. The SBC of soil is $120 \mathrm{kN} / \mathrm{m}^{2}$.

