15CV554

Visvesvaraya Technological University, Belagavi

MODEL QUESTION PAPER

5th Semester, B.E (CBCS) CV

Course: 15CV554 – Theory of Elasticity

Time: 3 Hours

Max Marks: 80

Note: (i) Answer Five full questions selecting any one full question from each Module. (ii) Question on a topic of a Module may appear in either its 1st or 2^{na} question.

		Module 1	
1	(a)	Define body force and surface force	3
	(b)	Derive the equations of equilibrium in three dimensions	5
	(c)	The state of stress at a point is given by following $ \begin{pmatrix} 9 & 6 & 3 \\ 6 & 5 & 2 \\ 3 & 2 & 4 \end{pmatrix} Mpa $ Determine principal stress and principle direction.	8
		OR	
2	(a)	What are the assumptions made in theory of Elasticity	4
	(b)	Derive the equation of compatibility for strain in three dimensions	4
	(c)	The following strains have been measured at a point on the unloaded surface of a bodyDirectionAngle θ Strain100.00221200.0023240-0.001	8
		Module 2	
3	(a)	With examples explain Plane stress and Plane strain problems.	4
	(b)	Write a short note on i) Generalized Hook's law ii) Membrane analogy	4
	(b)	Show that $\mathbf{\Phi} = \underline{\mathbf{q}} \mathbf{x}^2 (y^3 - 3c^2y + 2c^3) - \underline{\mathbf{l}} y^3 (y^2 - 2c^2)$ $8c^3 \qquad 5$ Is a stress function and find what problem it can solve, the when applied to region included $y = \pm c$, $\mathbf{x} = o$ on the Side \times Positive.	8

		OR	
4	(a)	Write a short note on i) Uniqueness theorem ii) St.Venant's Principle .	4
	(b)	Explain the Airy's stress function Derive the biharmonic stress function in Cartesian coordinate for a two dimensional stress state	5
	(c)	Given the stress function $\Phi = - \frac{f}{h^3} (3h - 2y)$. Determine the stress components and sketch the variations	7
		in a region included y=0, y=h, x=0 on the side X positive.	
		Module 3	
5	(a)	A rectangular cantilever concrete beam of depth d and width b is having span L measured from the free end. It carries a vertical downward load of P at free end. Derive the expressions for stresses at any point using stress function approach	9
	(b)	Given the following stress function $\mathbf{\Phi} = \underline{P}r\theta\cos\theta$ determine the stress component σ_r , σ_{Θ} and $\tau_{r\theta}$ π^3	7
		OR	
6	(a)	Show that for simply supported beam having length 2L ,depth 2H and unit width ,loaded by a concentrated load at the mid span the stress function satisfying the loading condition is $\mathbf{\Phi} = \underline{\mathbf{b}} \mathbf{x} \mathbf{y}^3 + \mathbf{cxy}$. Treat the concentrated load as a shear stress suitably distributed to 6 Suit the function, so that $\int_{-\hbar}^{+\hbar} \tau_{xy} = -w$ on each half length of beam. Also find stresses in the beam.	8
	(b)	Derive the equations of equilibrium for a two dimensional stress system in cylindrical coordinates.	8
		Module 4	
	(a)	Derive the expressions for radial and tangential stress components in rotating disc for i) Solid disc ii) Solid disc with hole	8
7	(b)	Determine the stress in radial and tangential direction for a stress function $\phi = A \log r + Br^2 \log r + Cr^2 + D$ taken for hollow cylinder submitted to uniform pressure	8
	. <u> </u>	OR	
	(a)	Discuss the effect of a circular hole on the stress distribution in an infinite plate subjected to tensile stress in X direction only and hence evaluate the stress concentration factor	9
		A steel cylinder which has inside diameter of 1m is subjected to an internal pressure of 8	7

Module 5								
9	(a)	Discuss the torsion of solid circular cross section shaft using a warping function ϕ	3					
	(b)	Derive the equations of stresses for rotating disc of uniform thickness	6					
	(c)	A Closed square section is subjected to torque of 600 N –m. Find the Maximum shear stress and twist unit length. Given G = 80000 N/mm ² and Length = 1200mm	7					
	OR							
10		Prove that the stress function in the torsional problem is equal to the deflection of the membrane	3					
	(b)	Explain membrane analogy as applied to torsional members	6					
		Calculate the maximum shear stress and the angle of twist. Twisting moment =615 N – m, G=80000 MN/m ² .	7					