Visvesvaraya Technological University, Belagavi
 MODEL QUESTION PAPER
 $5^{\text {th }}$ Semester, B.E (CBCS) CV
 Course: 15CV554 - Theory of Elasticity

Time: 3 Hours
Max Marks: 80
Note: (i) Answer Five full questions selecting any one full question from each Module.
(ii) Question on a topic of a Module may appear in either its $1^{\text {st }}$ or $2^{\text {na }}$ question.

OR			
4	(a)	Write a short note on i) Uniqueness theorem ii) St.Venant's Principle .	4
	(b)	Explain the Airy's stress function Derive the biharmonic stress function in Cartesian coordinate for a two dimensional stress state	5
		Given the stress function $\left.\Phi=-\left[\begin{array}{c}-x^{2} y^{2} \\ h^{3}\end{array}\right] 3 \mathrm{~h}-2 \mathrm{y}\right)$. Determine the stress components and sketch the variations in a region included $\mathrm{y}=0, \mathrm{y}=\mathrm{h}, \mathrm{x}=0$ on the side X positive.	7
Module 3			
5	(a)	A rectangular cantilever concrete beam of depth d and width b is having span L measured from the free end. It carries a vertical downward load of P at free end. Derive the expressions for stresses at any point using stress function approach	9
	(b)	Given the following stress function $\phi_{\Pi^{3}}=\underline{\operatorname{Pr}} \theta \cos \theta \text { determine the stress component } \sigma_{\mathrm{r}}, \sigma_{\theta} \text { and } \tau_{r \theta}$	7
OR			
6	(a)	Show that for simply supported beam having length 2 L ,depth 2 H and unit width ,loaded by a concentrated load at the mid span the stress function satisfying the loading condition is $\phi=\underline{\mathrm{b}} x \mathrm{y}^{3}+\mathrm{cxy}$. Treat the concentrated load as a shear stress suitably distributed to 6 Suit the function, so that $\int_{-k}^{+n} \tau_{x y}=\frac{-w}{2}$ on each half length of beam. Also find stresses in the beam.	8
	(b)	Derive the equations of equilibrium for a two dimensional stress system in cylindrical coordinates.	8
Module 4			
	(a)	Derive the expressions for radial and tangential stress components in rotating disc for i) Solid disc ii) Solid disc with hole	8
7	(b)	Determine the stress in radial and tangential direction for a stress function $\phi=\mathrm{A} \operatorname{logr}+\mathrm{Br}^{2} \operatorname{logr}+\mathrm{Cr}^{2}+\mathrm{D}$ taken for hollow cylinder submitted to uniform pressure	8
OR			
	(a)	Discuss the effect of a circular hole on the stress distribution in an infinite plate subjected to tensile stress in X direction only and hence evaluate the stress concentration factor	9
8	(b)	A steel cylinder which has inside diameter of 1 m is subjected to an internal pressure of 8 MPa. calculate the wall thickness if the maximum shearing stress is not exceeds 35 MPa	7

