Visvesvaraya Technological University, Belagavi
 MODEL QUESTION PAPER

$5^{\text {th }}$ Semester, B.E. (CBCS) EE
 Course: 15EE53 - Power Electronics

Time: 3 hours
Max. Marks: 80
Note: (i) Answer Five full questions selecting any one full question from each Module.

Module-1

1 a. Explain in brief, the different types of power electronic converter circuits and also specify the form of input and output with waveforms.
b. If a single-phase full-wave rectifier with center-tapped transformer has a purely resistive load of R, determine (a) the efficiency, (b) the RF, (c) the TUF and (d) the input power factor PF.

OR

2 a. What is power electronics? Mention its industrial applications.
b. Explain the function of a freewheeling diode, in a switched RL load circuit. Draw the circuit diagram and waveforms.
c. Compare the advantages and disadvantages of bridge rectifier and rectifier with centre-tapped transformer.

Module-2

3 a. Explain the isolation of gate drive using (i) pulse transformers and (ii) optocouplers
b. With the help of waveforms, explain the switching characteristics of a BJT.

OR

4 a. Draw the circuit diagram for an IGBT and explain its typical output characteristics.
b. The bipolar transistor is specified to have β_{F} in the range of 8 to 40 . The load resistance is $R_{C}=15 \Omega$. The dc supply voltage is $V_{C C}=150 \mathrm{~V}$ and the input voltage to the base circuit is $V_{B}=8 \mathrm{~V}$. If $V_{C E(\mathrm{sat})}=1.0 \mathrm{~V}, V_{B E(\mathrm{sat})}=1.5 \mathrm{~V}$ and $R_{B}=1.047 \Omega$, determine (a) the ODF, (b) the forced β and (c) the power loss in the transistor P_{T}.
C. A thyristor carries a current as shown in Figure 6 (b). The switching frequency is f_{s} $=120 \mathrm{~Hz}$. Determine the average ON state current I_{T}.

Fig 6 (b)

Module-4

7 a. With the help of suitable diagrams, explain the working of a single phase dual converter.
b. A single-phase ac voltage controller in Figure 7 (b) has a resistive load of $R=10 \Omega$ and the rms input voltage is $V_{s}=120 \mathrm{~V}, 60 \mathrm{~Hz}$. The delay angle of thyristor T_{1} is $\alpha=$ $\pi / 2$. Determine (a) the rms value of output voltage $V o$, (b) the input PF, and (c) the rms input current $I s$.

Fig. 7 (b)

OR

a. Draw the circuit diagram of a three phase bidirectional controller for a resistive load and show the waveforms for (a) Input line voltages, (b) Input phase voltages, (c) Thyristor gate pulses, and (d) Output phase voltage at a firing angle of 60°
b. A three-phase full-wave converter is operated from a three-phase Y-connected
$208-\mathrm{V}, 60-\mathrm{Hz}$ supply and the load resistance is $R=10 \Omega$. If it is required to obtain an average output voltage of 50% of the maximum possible output voltage, calculate (a)
the delay angle α, (b) the rms and average output currents, (c) the rms and average average output voltage of 50% of the maximum possible output voltage, calculate (a)
the delay angle α, (b) the rms and average output currents, (c) the rms and average thyristor currents, (d) the rectification efficiency.

Module-5

a. Explain the principle of step-up chopper and derive an expression for the average output voltage.
b. The single-phase full-bridge inverter has a resistive load of $R=2.4 \Omega$ and the dc input voltage is $V s=48 \mathrm{~V}$. Determine (a) the rms output voltage at the fundamental frequency, and (b) the output power $P o$.
c. What are the main differences between voltage-source and current-source inverters?

