[8]

[6]

Visvesvaraya Technological University, Belagavi

MODEL QUESTION PAPER

5th Semester, B.E. (CBCS) EE

Course: 15EE53 – Power Electronics

Time: 3 hours

1

2

Note: (i) Answer Five full questions selecting any one full question from each Module.

<u>Module-1</u>

1:00

a.	Explain in brief, the different types of power electronic converter circuits and also	
	specify the form of input and output with waveforms.	[8]
b.	If a single-phase full-wave rectifier with center-tapped transformer has a purely resistive load of R , determine (a) the efficiency, (b) the RF, (c) the TUF and (d) the input power factor PF.	[8]
	OR	
a.	What is power electronics? Mention its industrial applications.	[6]
b.	Explain the function of a freewheeling diode, in a switched RL load circuit. Draw	
	the circuit diagram and waveforms.	[6]
c.	Compare the advantages and disadvantages of bridge rectifier and rectifier with	
	centre-tapped transformer.	[4]
	Madula 2	

Module-2

3	a.	Explain the isolation of gate drive using (i) pulse transformers and (ii) optocouplers	[8]
	b.	With the help of waveforms, explain the switching characteristics of a BJT.	[8]

OR

- 4 a. Draw the circuit diagram for an IGBT and explain its typical output characteristics.
 - b. The bipolar transistor is specified to have β_F in the range of 8 to 40. The load resistance is $R_C = 15 \Omega$. The dc supply voltage is $V_{CC} = 150$ V and the input voltage to the base circuit is $V_B = 8$ V. If $V_{CE \text{ (sat)}} = 1.0$ V, $V_{BE(\text{sat})} = 1.5$ V and $R_B = 1.047 \Omega$, determine (a) the ODF, (b) the forced β and (c) the power loss in the transistor P_T .

Module-3

- 5 a. With a neat sketch describe the two-transistor model of a thyristor and obtain the expression for anode current.
 - b. Ten thyristors are used in a string to withstand a dc voltage of $V_s = 15$ kV. The maximum leakage current and recovery charge differences of thyristors are 10 mA and 150µC, respectively. Each thyristor has a voltage-sharing resistance of R = 56 k Ω and capacitance of $C_1 = 0.5$ µF. Determine (a) the maximum steady-state voltage sharing $V_{DS(max)}$, (b) the steady-state voltage derating factor, (c) the maximum transient voltage sharing $V_{DT(max)}$, and (d) the transient voltage derating factor.

OR

- 6 a. Explain the VI characteristics of SCR with a neat graph.
 - b. Briefly explain the following:

(i)LASCR (ii) GTO (iii) TRIAC

Max. Marks: 80

[8]

[8]

[8]

A thyristor carries a current as shown in Figure 6 (b). The switching frequency is fs C. =120 Hz. Determine the average ON state current I_{T} .

Module-4

- 7 With the help of suitable diagrams, explain the working of a single phase dual a. converter.
 - A single-phase ac voltage controller in Figure 7 (b) has a resistive load of $R = 10 \Omega$ b. and the rms input voltage is $V_s = 120$ V, 60 Hz. The delay angle of thyristor T1 is $\alpha =$ $\pi/2$. Determine (a) the rms value of output voltage Vo, (b) the input PF, and (c) the rms input current Is.

- 8 Draw the circuit diagram of a three phase bidirectional controller for a resistive load a. and show the waveforms for (a) Input line voltages, (b) Input phase voltages, (c) Thyristor gate pulses, and (d) Output phase voltage at a firing angle of 60°
 - A three-phase full-wave converter is operated from a three-phase Y-connected b. 208-V, 60-Hz supply and the load resistance is $R = 10 \Omega$. If it is required to obtain an average output voltage of 50% of the maximum possible output voltage, calculate (a) the delay angle α , (b) the rms and average output currents, (c) the rms and average thyristor currents, (d) the rectification efficiency. [8]

Module-5

OR

- 9 Explain the principle of step-up chopper and derive an expression for the average a. [8] output voltage.
 - The single-phase full-bridge inverter has a resistive load of $R = 2.4 \Omega$ and the dc b. input voltage is Vs = 48 V. Determine (a) the rms output voltage at the fundamental frequency, and (b) the output power Po.
 - What are the main differences between voltage-source and current-source inverters? C. [4]

10 Draw the circuit diagram for a four quadrant converter and explain its working a. [6] Explain 120° conduction mode of operation in a three-phase inverter along with b. circuit and neat waveforms.

[10]

[4]

[8]

[8]

[4]