Visvesvaraya Technological University, Belagavi CBCS Scheme: 2015-16

MODEL QUESTION PAPER

15EI53

-

Fifth Semester Electronics & Instrumentation Engineering

Process Control Systems

Max. Marks: 80

Note: Answer FIVE FULL Questions, selecting ONE FULL Question from each Module

Time: 3 Hrs

Г

Question Number	Question	Marks Allotted		
	Module -1			
1a	Draw the block diagram of a general process control system. Taking an example explain the functions of each block.	6		
1b	Discuss the following requirements to achieve objectives of a process control system.			
	i) Stabilityii) Steady state regulationiii)Transient regulation	6		
1c	With a neat sketch and necessary equations, explain the following control system evaluation criteriai) Minimum area criteriaii) Quarter amplitude criteria	4		
	OR			
2a	Draw the block diagram and explain the function of elements used in final control operation.	6		
2b	With a neat schematic, explain the operation of current to pressure converter	4		
2c	 A 4-bit digital word is intended to control the setting of a 2Ω dc resistive heater, Heat output varies as a 0 to 24 V input to the heater. Using a 10-V DAC followed by an amplifier with a high-current output, calculate (i)The settings from minimum to maximum heat dissipation and (ii) How the power varies with LSB changes. 	6		
	Module -2			
3a	Define the following terms 1. Process equation 2. Process load 3. Dead time 4. Process lag	10		
	5. Self regulation			

3b	The temperature of water in a tank is controlled by a two-position controller. When the heater is off <i>the</i> temperature drops at 2 K per minute. When the heater is <i>on</i> the temperature rises at 4 K per minute. The setpoint is 323 K and the neutral zone is $\pm 4\%$ of the setpoint. There is a 0.5-min lag at both the <i>on</i> and <i>off</i> switch points. Find the period of oscillation and plot the water temperature versus time.	6
	OR	
4a	Consider the proportional-mode level-control system of Figure 4.a. Value A is linear, with a flow scale factor of 10 m ³ /h per percent controller output. The controller output is nominally 50% with a constant of $K_p = 10\%$ per %. A load change occurs when flow through valve B changes from 500 m ³ /h to 600 m ³ /h. Calculate the new controller output and offset error.	6
	Fig. 4a	
4b	With a neat graph of error and controller output, discuss working of integral control mode.	8
4c	Summarize the characteristics of the derivative mode.	2
	Module -3	
5a	Design a proportional-integral controller with a proportional band of 30% and an integration gain of $0.1\%/(\%-s)$. The 4- to 20-mA input converts to a 0.4- to 2-V signal, and the output is to be 0–10 V. Calculate values of Gp ,GI ,R 2,R1 , and C, respectively.	8
5b	With a neat circuit diagram and necessary equations explain the design implementation of op-Amp PID control	8
	OR	
ба	Draw a neat block diagram of a computer supervisory control, explain its operation considering an example of strongly interacting process.	
бb	 A proportional mode has K_p = 2.4, input range of 255, and setpoint of 130. The output maximum is 180, and the output fraction with no error is 0.45. i. Develop the control equations. (What is the output for no error?) ii. Find the output for an input of 124. 	12

	Module -4	
7a	With a block diagram, explain working of cascade process control system.	8
7b	Explain Ziegler-Nichols method as applied to P, PI and PID controller.	8
	OR	
8a	In a compound control system, the ratio between two variables is to be maintained at 3.5 to 1. If each has been converted to a 0–5-V range signal, devise a signal conditioning system that will output a zero signal to the controller when the ratio is correct.	8
8b	Illustrate and explain with a block diagram and wave forms, how process control loop can cause instability for some frequency, if Gain margin and phase margin is not properly designed.	8
	Module -5	
9a	Define the terms 'modeling' and 'simulation'	4
9b	Explain the need of system modeling for plant automation	4
9c	Explain the steps followed to build the mathematical model of a plant	8
	OR	
10a	With block diagrams briefly explain the followingi) Model reference adaptive controlii) Model identification adaptive control	8
10b	With a diagram and flow chart, show the difference in working of conventional EDP system and AI system	8