Visvesvaraya Technological University, Belagavi CBCS Scheme: 2015-16

MODEL QUESTION PAPER
 Fifth Semester Electronics \& Instrumentation Engineering

15EI/BM52

Fundamentals of Signals and DSP

Time: 3 Hrs
Max. Marks: 80
Note: Answer FIVE FULL Questions, selecting ONE FULL Question from each Module

Question Number	Question	Marks Allotted
	Module -1	
1a	Give the Classification of the Discrete Time Signals with suitable examples.	5
1 b	Determine the response $\mathrm{y}[\mathrm{n}]$ of the system, given $x[n]=\left\{\begin{array}{cc}\|n\|,-3 \leq n \leq 3 \\ 0, & \text { otherwise }\end{array}\right.$ \& $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-1]$	5
1 c	The impulse response of a linear time-invariant system is $h[n]=\left[\begin{array}{c}2,3,1,-4 \\ \uparrow\end{array}\right]$. Compute the response of the system to an input signal $x[n]=[1,3,5,2]$	6
OR		
2a	With a suitable example, describe the different representations of a discrete time signal.	4
2b	State the Sampling theorem and also compute the Nyquist rate for the analog signal $x[n]=3 \cos 50 \pi t+10 \sin 400 \pi t-\cos 150 \pi t$.	6
2c	Obtain the cross correlation of the sequences $\mathrm{x}[n]=\left[\begin{array}{ccc}1, & 2, & 3,1 \\ \uparrow\end{array}\right]$ and $y[n]=$ $\left[\begin{array}{cc}3, & 1,2,2 \\ \uparrow\end{array}\right]$	6
	Module -2	
3 a	Evaluate the Z- transform (with ROC) of the sequences $x[n]=\left[\begin{array}{c}1,2,3,-4 \\ \uparrow\end{array}\right]$ \& $y[n]=3^{n} u[n]$	6
3 b	Using partial fraction expansion, obtain $\mathrm{x}[\mathrm{n}]$ for $X(z)=\frac{z}{3 z^{2}-4 z+1}\|z\|>1$	6
3 c	Check the causality of the LTI system given by	4

	$H(z)=\frac{z^{3}+2 z^{2}}{z-\frac{1}{2}} ; R O C:\left\|z>\frac{1}{2}\right\|$	
OR		
4a	Determine the system function and unit sample response of the system described by the difference equation $\mathrm{y}[\mathrm{n}]=0.5 \mathrm{y}[\mathrm{n}-1]+2 \mathrm{x}[\mathrm{n}]$	6
4b	List the properties of the Z-transform.	4
4c	Draw the direct form I \& II structures of the filter given by $H(z)=\frac{1-3 z^{-1}}{1+2 z^{-2}-4 z^{-3}}$	6
	Module - 3	
5a	State and explain the following DFT properties: Time Reversal and Periodicity	6
5b	Draw the 8-point DITFFT Signal Flow Graph.	5
5 c	Explain how linear filtering is carried out by using DFT.	5
OR		
6a	Using DFT and IDFT, compute the circular convolution of the sequences: $\mathrm{x}[\mathrm{n}]=\{2,1,3\}$ and $\mathrm{h}[\mathrm{n}]=\{1,2,5,2\}$	12
6b	Given $\mathrm{X}(\mathrm{k})=[0,1+\mathrm{j}, 1,1-\mathrm{j}]$, using the properties of the DFT, compute the DFT W(k) of the sequence $\mathrm{w}(\mathrm{n})=\mathrm{x}((\mathrm{n}-1))_{4}$	4
	Module -4	
7a	Labeling the important specifications, draw the figure of the magnitude characteristics of a physically realizable low pass filter.	4
7b	Compute the order and cut-off frequency of an analog Butterworth filter for the following specifications : attenuation of -2 dB at $20 \mathrm{rad} / \mathrm{sec}$, stopband attenuation of more than 10 dB beyond $30 \mathrm{rad} / \mathrm{sec}$	8
7 c	Draw the structure of a single stage lattice filter.	4
OR		
8a	For the analog transfer function $H(s)=\frac{1}{s+1}-\frac{1}{s+3}$, determine $H(z)$ using impulse invariant method if $\mathrm{T}=1 \mathrm{~s}$.	8
8b	Design an FIR linear-phase, digital filter approximating the ideal frequency response.	8

	$H_{d}\left(e^{j \omega}\right)=\left\{\begin{array}{l} 1, \text { for }\|\omega\|<\frac{\pi}{4} \\ 0, \text { for } \frac{\pi}{4}<\|\omega\|<\pi \end{array}\right.$ Using a rectangular window of length, $\mathrm{N}=9$	
	Module -5	
9a	For the signal $x[n]=\left[\begin{array}{c}1,2,3,-4,5,6,8,9 \\ \uparrow\end{array}\right]$, compute the decimated signal $\mathrm{w}[\mathrm{n}]$ $=x[3 n]$ decimated by a factor of 3 and also the interpolated signal $y[n]=x[n / 2]$ interpolated by a factor of 2 .	6
9 b	Describe the realization of the Analysis and Synthesis Filter bank.	6
9c	What is the principle of operation of an adaptive filter?	4
OR		
10a	Illustrate a few applications of the Adaptive filter.	6
10b	With a neat block diagram, discuss the architecture of the TMS320c54xx Processor.	10

