
Fifth Semester B.E. Degree (CBCS) Examination Turbomachines

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

1 a Define turbomachine. Compare positive displacement machines and (08Marks) turbomachines.
b A Pelton wheel is running at a speed of 200 rpm and develops 5200 kW of power (08Marks) when working under a head of 220 m with an overall efficiency of 80%. Determine its unit speed, unit discharge, unit power and specific speed.

2 a Show that for expansion process, stage efficiency is higher than overall (08Marks) efficiency.
b Find the number of stages of an axial flow compressor with symmetrical balding (08Marks) in order to produce a total pressure rise from 1bar to 4 bar . The blade height is 3 cm , the mean diameter is 100 cm , mean speed of the rotor is 2400 rpm and the stage efficiency is 82%.

MODULE - II

3 a Derive an alternate form of Euler Turbine equation.
b In an axial flow turbine the discharge blade angles are 20° each for both the stator
and the rotor. The steam speed from the nozzle exit is $140 \mathrm{~m} / \mathrm{s}$. The ratio of Va / U $=0.7$ at the entry and 0.76 at the exit of the rotor blade. Find the rotor inlet blade angle and the power developed by the blade ring for a mass flow rate of $2.6 \mathrm{~kg} / \mathrm{s}$.

OR

4 a For an axial flow compressor, derive an expression for degree of reaction.
(08 Marks)
b In a radial inward flow turbine the degree of reaction is 0.8 and the utilization factor of the runner is 0.9 . The tangential speeds of the wheel at the inlet and the outlet are respectively $11 \mathrm{~m} / \mathrm{s}$ and $5.5 \mathrm{~m} / \mathrm{s}$. Draw the velocity triangles at inlet and outlet assuming radial velocity is constant and equal to $5 \mathrm{~m} / \mathrm{s}$. Flow is radial at exit. Find the power output for a volumetric flow rate of $2 \mathrm{~m}^{3}$ of water per second.

MODULE - III

5 a Define compounding. List different methods of compounding. With a neat (08 Marks) sketch explain velocity compounding of steam turbine.
b. A single wheel impulse steam turbine has equiangular rotor blades that develop 3.75 kW and produce a torque in the disc of $1.62 \mathrm{~N}-\mathrm{m}$ at a mean radius of 132.5 mm . The rotor receives $0.014 \mathrm{~kg} / \mathrm{s}$ of steam from nozzles inclined at 70° to the axial direction and steam discharges from the wheel chamber in an axial (08 marks) direction. Find (a) the blade angles, (b) the diagram efficiency.

OR

6 a Derive an expression for degree of reaction of a reaction steam turbine.
b Find the blade of a two stage velocity compounded axial flow steam turbine from the following data:
i) Rotor blade angles $=30^{\circ}$, ii) Absolute velocity of steam entering the first stage $=500 \mathrm{~m} / \mathrm{s}$, iii) Discharge is axial at the second stage
(08 Marks)

MODULE - IV

7 a With a neat sketch, explain the working principle of Francis turbine. Write the (08 Marks) functions of draft tube.
b A medium Francis runner has a diameter of 75 cm and with of 10 cm . Water leaves the guide vanes at a velocity of $16 \mathrm{~m} / \mathrm{s}$ inclined at 25° with the runner periphery. The net head is 20 m . The overall and hydraulic efficiencies are 80% and 90% respectively. Assuming that 8% of the flow area is lost due to the runner vanes thickness. Calculate the runner vane angle at inlet, power output by the runner and speed of the machine.

OR

a Derive an expression for the work on the vane of Pelton turbine.
b A Kaplan turbine produces 10 Mw at a head of 25 m . The runner and the hub (08 Marks) diameters are 3 m and 1.2 m respectively. The inlet and outlet velocity triangles are right angles triangles. Calculate the speed and outlet angles of the guide and runner blades if the hydraulic and overall efficiencies are 96A\% and 85% respectively.

MODULE - V

a Derive an expression for energy transfer and discharge. Plot the variation of (08 Marks) Energy transfer with discharge. Discuss the effect with respect to the discharge angle.
b A centrifugal pump is required to lift 910lit/s of water against 6 m when running (08 Marks) at 500 rpm . The velocity of flow through the wheel is $2 \mathrm{~m} / \mathrm{s}$ and the manometric efficiency is 60%. The angle of the vane tip makes with the direction of the motion is 30°. Determine the diameter and width of the impeller.

OR

a Explain i) Cavitation, ii) Net Positive Suction Head, iii) Priming, iv) Manometric (08 Marks) Head.
b The following data refers to a centrifugal pump: (i) Both angle at the impeller exit (08 Marks) $=30^{\circ}$, ii) Outer diameter of the impeller $=0.6 \mathrm{~m}$, (iii) inner diameter of the impeller $=0.25 \mathrm{~m}, \mathrm{iv})$ width of the impeller at the exit $=8 \mathrm{~cm},(\mathrm{v})$ width of the impeller at the inlet $=12.5 \mathrm{~cm}$, (vi) speed $=400 \mathrm{rpm}$, vii) discharge $=67801 \mathrm{it} / \mathrm{min}$. Find the theoretical head developed in kW and the blade angle at the impeller entry.

