	Ν	10	del Question Paper (CBCS) with effect from 2015-16		
	USN	N		15ME552	
	Fifth Semester B.E. Degree (CBCS) Examination				
	Theory of Elasticity				
	Time	:3]		. Marks: 80	
	Note: Answer any FIVE full questions, choosing one full question from each module.				
<u>MODULE – I</u>					
practice.	1	a	A point under three dimensional stress system is on xyz coordinate system. Derive the Cauchy's stress equations for the component of the stresses on an arbitrary	(10 Marks)	
l as mal		b	plane. Explain stress invariants and plane state of stress.	(06 Marks)	
treated			OR		
0, will be t	2	a	Derive expressions for Octahedral normal and Octahedral shear stresses in terms of stress invariants.	(08 Marks)	
for and /or equations written e.g, $38+2 = 40$, will be treated as malpractice.		b	Rectangular component of stress at a point is given by $\sigma = \begin{bmatrix} 50 & 30 & 10 \\ 30 & 30 & 20 \\ 10 & 20 & 15 \end{bmatrix}$ MPa. Determine the stresses on a plane whose outward normal a) Has direction cosines $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0$ b) Has direction ratio 3, 2, -1	(08 Marks)	
/or equi	₩ODULE – II				
at	3	a	Discuss the significance of compatibility conditions. Given the following strain field: $\varepsilon_x = 5 + x^2 + y^2 + x^4 + y^4$	(10 Marks)	
peal t			$\varepsilon_{y} = 6 + 3x^{2} + 3y^{2} + x^{4} + y^{4}$		
on, ap			$\gamma_{xy} = 10 + 4x^3y + 4y^3x + 8xy$		
2. Any revealing of identification, appeal to evalue		b	$\varepsilon_z = 0, \ \gamma_{yz} = 0, \ \gamma_{xz} = 0$ Determine whether the above strain field is possible. Displacement field at a point on a body is given as follows $u = (x^2yz+z^2); \ v = (xy^2z+y^2); \ w = (xyz^2+x^2).$ Determine the strain components at (2, 1, 2) and express them in matrix form. OR	(06 Marks)	
Any re	4	a	Derive the first and second set of compatibility equations.	(10 Marks)	
5		b	Define strain invariants and plane state of strain.	(06 Marks)	

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

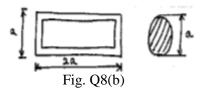
MODULE – III

- **a** Derive the biharmonic equation considering the plane strain condition in the (10 Marks) Cartesian coordinate system.
 - **b** The state of stress at a point is given by: $\sigma_x = 200 \text{ MPa}, \sigma_y = -100 \text{ MPa}, \sigma_z = 50 \text{ MPa}$ $\sigma_{xy} = 40 \text{ MPa}, \sigma_{yz} = 50 \text{ MPa}, \sigma_{zx} = 60 \text{ MPa}.$ If E = 2x10⁵ N/mm² and G = 0.8x10⁵ N/mm², find the corresponding strain components from Hooke's law. Take v=0.2.

OR

a Derive the expressions for stresses in a thick cylinder under the uniform internal (16 Marks) and external pressures.

MODULE – IV


- **a** Derive the expressions for stresses σ_r and σ_{θ} in a solid rotating disc of uniform thickness. (09 Marks)
- **b** A solid disc of 150 mm radius rotates at 500 rpm. Given: mass density = 7.2×10^{-6} kg/mm³, E = 2×10^{5} MPa and v=0.3. Find the value of circumferential stress at the (07 Marks) center of the disc and at the outer periphery. Also, find the change in radius.

OR

a A disc of uniform thickness with inner and outer diameter 100 mm and 400 mm, respectively, is rotating at 5000 rev/min. The density of the material is 7800 kg/m³ (08 Marks)

and ν =0.28. Determine the radial and circumferential stress at a radius of 0.05m.

- **b** A thin walled box section having dimensions 2a x a x t is to be compared with a solid circular section of diameter as shown in Fig. Q8(b). Determine the thickness t so that the two sections have
 (08 Marks)
 - a) The same maximum shear stress for the same torque and
 - b) The same stiffness

<u>MODULE – V</u>

- **a** Explain the significance of thermo-elastic stresses. Also, write the thermo-elastic (06 Marks) stress strain relations.
 - **b** Obtain the expressions for radial and tangential stresses in a solid circular cylinder (10 Marks) subjected to uniform temperature. Also, obtain similar expressions for hollow cylinder.

OR

a Derive Euler's expression for buckling load for column with both ends hinged. (08 Marks)
 b Derive the expressions for stress components in a thin circular disc subjected to (08 Marks) temperature.

Any revealing of identification, appeal to evaluator and /or equations written e.g, 38+2 = 40, will be treated as malpractice. 6

d