
Fifth Semester B.E. Degree (CBCS) Examination Theory of Elasticity

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

MODULE - I

1 a Derive the equations of equilibrium for a 2-D stress state.
(08 Marks)
b State of stress at a point is given by $\sigma=\left[\begin{array}{ccc}12 & 6 & 9 \\ 6 & 10 & 3 \\ 9 & 3 & 14\end{array}\right]$ MPa. Find principal stresses and directions.

OR

2 a A point under three dimensional stress system is on xyz coordinate system. Derive (08 Marks) the Cauchy's stress equations for the component of the stresses on an arbitrary plane.
b A rectangular component of stress at a point are given as follows:
$\sigma_{x}=100 \mathrm{MPa}, \quad \sigma_{y}=75 \mathrm{MPa}, \sigma_{z}=50 \mathrm{MPa}$
$\sigma_{x y}=70 \mathrm{MPa}, \quad \sigma_{y z}=50 \mathrm{MPa}, \sigma_{x z}=30 \mathrm{MPa}$
(08 Marks)
a) Find stresses on octahedral plane
b) Stress on plane whose outward normal has direction cosines $\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}$

MODULE - II

3 a Derive the first and second set of compatibility equations.
b The displacement field is given by $u=\left(x^{2}+2 z\right) ; v=\left(4 x+2 y^{2}+z\right)$; $w=\left(4 z^{2}\right)$.
(06 Marks)
What are the strain components at $(2,2,3)$ and express them in matrix form.

OR

4 a Discuss the significance of compatibility conditions. Also, define plane state of (06 Marks) strain.
b If strain at a point is given as follows:
(10 Marks)
$\varepsilon_{x}=4 \times 10^{-3}, \varepsilon_{y}=3 \times 10^{-3}, \varepsilon_{z}=2 \times 10^{-3}$
$\gamma_{x y}=2 \times 10^{-3}, \gamma_{y z}=1 \times 10^{-3}, \gamma_{x z}=-3 \times 10^{-3}$
Find the principal strains and determine the direction cosines of maximum principal strain.

MODULE - III

5 a Determine the bending stress component in case of bending of cantilever bean by (09 Marks) an end load.
b A thick cylinder of internal diameter 150 mm and external diameter 200 mm is simultaneously subjected to internal pressure of 10 MPa and external pressure of 4 MPa . Given, $\mathrm{E}=2 \times 10^{5} \mathrm{MPa}$ and $v=0.25$. Determine:
a) Circumferential stresses at r_{i} and r_{0}.
b) Plot variation of radial and hoop stress across the thickness.
c) Change in internal and external radii.

OR

6 a Derive the equations of equilibrium in polar coordinates.
b The state of stress at a point is given by:
$\sigma_{x}=200 \mathrm{MPa}, \sigma_{y}=-100 \mathrm{MPa}, \sigma_{z}=50 \mathrm{MPa}$
$\sigma_{x y}=40 \mathrm{MPa}, \sigma_{y z}=50 \mathrm{MPa}, \sigma_{z x}=60 \mathrm{MPa}$.
(06 Marks)
If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{G}=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, find the corresponding strain components from Hooke's law. Take $v=0.2$.

MODULE - IV

7 a Determine the maximum shear stress under torsion of a circular bar.

OR

8 a Derive expressions for shearing stresses induced in a bar of elliptical cross section that is subjected to a twisting moment. Also, show that maximum stress occurs at (08 Marks) the ends of the minor axis of ellipse.
b A hollow disc of internal radius 100 mm and external radius 150 mm rotates at 200 rpm . Determine the circumferential stress at r_{i} and r_{o}. Also, find the change in (08 Marks) internal and external radius. Assume: $\rho=7.2 \times 10^{-6} \mathrm{~kg} / \mathrm{mm}^{3}, \mathrm{E}=2 \times 10^{5} \mathrm{MPa}$ and $v=0.3$.

MODULE - V

9 a Determine the radial and tangential stress distribution in a solid long cylinder (09 Marks) subjected to a radial temperature distribution.
b Derive Euler's expression for buckling load for column with one end fixed and (07 Marks) other end free.

OR

10 a Derive the expressions for stress components in a thin circular disc subjected to (10 Marks) temperature.
b Explain the significance of thermo-elastic stresses. Also, write the thermo-elastic (06 Marks) stress strain relations.

