	 F	1	5ME552				
USN	N						
Fifth Semester B.E. Degree (CBCS) Examination							
Theory of Elasticity							
Time	Marks: 80						
		Note: Answer any FIVE full questions, choosing one full question from each modu	le.				
<u>MODULE – I</u>							
1	a	Derive the equations of equilibrium for a 2-D stress state.	(08 Marks)				
	b	State of stress at a point is given by $\sigma = \begin{bmatrix} 12 & 6 & 9 \\ 6 & 10 & 3 \\ 9 & 3 & 14 \end{bmatrix}$ MPa. Find principal	(08 Marks)				
		stresses and directions.					
2	a	A point under three dimensional stress system is on xyz coordinate system. Derive the Cauchy's stress equations for the component of the stresses on an arbitrary plane.	(08 Marks)				
	b	A rectangular component of stress at a point are given as follows: $\sigma_x = 100 \text{ MPa}, \qquad \sigma_y = 75 \text{ MPa}, \qquad \sigma_z = 50 \text{ MPa}$ $\sigma_{yy} = 70 \text{ MPa}, \qquad \sigma_{yz} = 50 \text{ MPa}, \qquad \sigma_{yz} = 30 \text{ MPa}$	(08 Marks)				
		a) Find stresses on octahedral plane					
		b) Stress on plane whose outward normal has direction cosines $\frac{1}{\sqrt{2}}$, 0, $\frac{1}{\sqrt{2}}$					
<u>MODULE – II</u>							
3	a	Derive the first and second set of compatibility equations.	(10 Marks)				
	b	The displacement field is given by $u = (x^2+2z)$; $v = (4x+2y^2+z)$; $w = (4z^2)$. What are the strain components at (2, 2, 3) and express them in matrix form.	(06 Marks)				
4	a	Discuss the significance of compatibility conditions. Also, define plane state of stroip	(06 Marks)				
	b	If strain at a point is given as follows: $\varepsilon_x = 4x10^{-3}$, $\varepsilon_y = 3x10^{-3}$, $\varepsilon_z = 2x10^{-3}$	(10 Marks)				
		$\gamma_{xy} = 2x10^{-3}, \ \gamma_{yz} = 1x10^{-3}, \ \gamma_{xz} = -3x10^{-3}$					
		Find the principal strains and determine the direction cosines of maximum principal strain.					
		$\underline{\mathbf{MODULE}} - \mathbf{III}$					
5	a b	Determine the bending stress component in case of bending of cantilever bean by an end load. A thick cylinder of internal diameter 150 mm and external diameter 200 mm is	(09 Marks)				
		simultaneously subjected to internal pressure of 10 MPa and external pressure of					
		 4 MPa. Given, E = 2x10⁵MPa and ν = 0.25. Determine: a) Circumferential stresses at r_i and r_o. b) Plot variation of radial and hoop stress across the thickness. 	(U/ Marks)				
		c) Change in internal and external radii.					

Model Question Paper (CBCS) with effect from 2015-16

s malpractice.

6	a	Derive the equations of equilibrium in polar coordinates.	(10	Marks)
	b	The state of stress at a point is given by:		
		$\sigma_x = 200 \text{ MPa}, \ \sigma_y = -100 \text{ MPa}, \ \sigma_z = 50 \text{ MPa}$	(06]	Marks)
		$\sigma_{xy} = 40 \text{ MPa}, \ \sigma_{yz} = 50 \text{ MPa}, \ \sigma_{zx} = 60 \text{ MPa}.$		
		If $E = 2x10^5$ N/mm ² and $G = 0.8x10^5$ N/mm ² , find the corresponding strain		
		components from Hooke's law. Take $v=0.2$.		

MODULE – IV

7 a Determine the maximum shear stress under torsion of a circular bar. (16 Marks)

OR

- 8 a Derive expressions for shearing stresses induced in a bar of elliptical cross section that is subjected to a twisting moment. Also, show that maximum stress occurs at (08 Marks) the ends of the minor axis of ellipse.
 - **b** A hollow disc of internal radius 100 mm and external radius 150 mm rotates at 200 rpm. Determine the circumferential stress at r_i and r_o . Also, find the change in (08 Marks) internal and external radius. Assume: $\rho = 7.2 \times 10^{-6} \text{ kg/mm}^3$, $E = 2 \times 10^5 \text{ MPa}$ and

v=0.3.

$\underline{MODULE-V}$

- **9 a** Determine the radial and tangential stress distribution in a solid long cylinder (09 Marks) subjected to a radial temperature distribution.
 - **b** Derive Euler's expression for buckling load for column with one end fixed and (07 Marks) other end free.

OR

- **10 a** Derive the expressions for stress components in a thin circular disc subjected to (10 Marks) temperature.
 - **b** Explain the significance of thermo-elastic stresses. Also, write the thermo-elastic (06 Marks) stress strain relations.