Model Question Paper (CBCS) with effect from 2015-16

TICNI					
USIN					

15ME73

Seventh Semester B.E. Degree (CBCS) Examination

Control Engineering

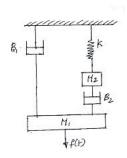
Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

MODULE - I

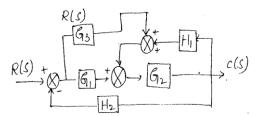
1 a What are the requirements of Ideal control system?

- (08 Marks)
- **b** Differentiate between open loop and closed loop control system with an example (08 Marks) for each.

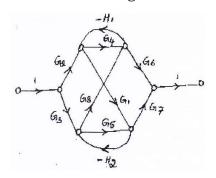

OR

- **a** What is control action? Explain proportional plus integral and proportional plus (08 Marks) derivative controller.
 - **b** With neat block diagram, explain proportional and integral controllers. (08 Marks)

MODULE - II


3 a Obtain the transfer function of field controlled DC motor.

- (08 Marks)
- **b** Write the differential equations governing the mechanical system shown figure. (08 Marks) Also draw F-V and F-I analogous circuits.


OR

- 4 a Reduce the block diagram in fig and obtain its transfer function.
- (08 Marks)

b Obtain the overall transfer function for the given SFG.

(08 Marks)

MODULE - III

5 a A system has the following transfer function,

(10 Marks)

$$\frac{C(s)}{R(s)} = \frac{20}{s+10}$$

Determine its unit impulse, step and ramp response with zero initial conditions. Sketch the responses

- **b** Derive an expression for response of 1st order system for unit step input
- (06 Marks)

OR

6 a A feedback control system has open loop transfer function G(s)H(s) = (16 Marks) $\frac{K}{s(s+4)(s^2+4s+20)}$. Plot the root locus for K = 0 to ∞ . Indicate the points on it.

MODULE - IV

7 **a** Draw the Nyquist plot for a given control system, $G(s)H(s) = \frac{K}{s(s+2)(s+10)}$. Determine (16 Marks) the range of K for which the system is stable

OR

8 a Sketch the Bode plot for the transfer function and determine the value of K for (16 Marks) gain cross over frequency of 5 rad/s. $G(s)H(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$.

MODULE - V

- 9 **a** The system is represented by a differential equation y''' + 6y'' + 12y' + 10y = 4u, (08 Marks) where y is the output and u is the input of the system. Obtain the state space equation.
 - **b** Define the terms (i) Controllability of a system, (b) State of a system, (c) State (08 Marks) vector, (d) Observability of a system.
- 10 a Consider the system defined by $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u(t)$ (10 Marks)
 - Y = $\begin{bmatrix} 10 & 5 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Check the controllability and observability of the system using
 - **b** Define compensator. Explain in brief feedback compensator with the help of block (06 Marks) diagram.