Model Question Paper (CBCS) with effect from 2015-16												15ME73		
USN	1]			
			Se	ver	hth	Sen	nes	ter]	B.E.	. De	- egree (CBCS) Examination			
							(Con	trol	l En	gineering			
Time:	Time: 3 hrs.												arks: 80	
	ľ	Note: A	Answe	r any	7 FIV	'E fu	11 qu	iesti	ons,	choo	osing one full question from each mod	ule.		
1	a	With syste	an exa ems.	ampl	e for	both	expl	lain 1	MC the v)DU vorki	$\mathbf{LE} - \mathbf{I}$ ing of open loop and closed loop control	(08	Marks)	
	b	List syste	the ac ems.	lvant	tages	and	l dis	sadva	anta	ges (of open loop and closed loop control	(08	Marks)	
2	OR a Explain the requirements of Ideal control system										system	(08	Marks)	
	a h	Witl	n heln	ofbl	ock (liaor	am	evnl	ain r	nron	ortional plus integral controller	(08	Marks)	
	U	vv i ci	incip			iiagi	am	САРГ) TTT		(,	
3	a	a Obtain the transfer function of armature controlled DC motor.									$\mathbf{E} - \mathbf{H}$ controlled DC motor.	(08	Marks)	
	b	Writ Also	e the d draw l	liffer F-V a	entia Ind F	l equ `-I an	iatio ialog	ns g jous	over circu	ning uits.	the mechanical system shown figure.	(08	Marks)	
						* THB		M_1		4) <	$M_2 \longrightarrow B_2$			
4	a	Redu	ace the	bloc	ek dia	agrar	n in	fig a	nd o	OR obtain	n its transfer function.	(08	Marks)	
					រ	(12)		6	ñ,]	[H_a			
i	b	Obta	in the	over	all tr	ansf	er fu	nctio	on fo	or the	e given SFG.	(08	Marks)	
						o	1	GI	Ga H	G3 -H3	64 65 1 -H4 -H5			
-	_	A	atom 1-	00 +1	o fol	10000	na t	onof	MO	DUI	LE – III	(10	Mortea	
5	a	л sy	stem n	as tr	16 101	10W11	ig tr	ansi	er Iù	110110	J11,	(10	marksj	

$$\frac{C(s)}{R(s)} = \frac{20}{s+10}$$

Determine its unit impulse, step and ramp response with zero initial conditions. Sketch the responses

Derive an expression for response of 1st order system for unit step input (06 Marks) b

OR

Sketch the root locus plot for $G(s)H(s) = \frac{K}{s(s+2)(s+4)(s+6)}$. For what values of K the (16 Marks) 6 a system becomes unstable.

MODULE – IV

Draw the Nyquist plot for a given open loop transfer function, $G(s)H(s) = \frac{5}{s(1-s)}$. (16 Marks) 7 a Comment on stability of the control system.

OR

Sketch the Bode plot for the transfer function $G(s)H(s) = \frac{75(1+0.2s)}{s(s^2+16s+100)}$. (16 Marks) 8 a

MODULE – V

- 9 Explain the series compensation with neat block diagram. (06 Marks) a
 - Construct a state model using phase variables if the system is described by the (10 Marks) b differential equation y'''(t) + 4y''(t) + 7y'(t) + 2y(t)=5u(t).

OR

Define the following terms (a) state variables, (b) state space, (d) state trajectory 10 (06 Marks) a

Find the observability of the state model using Kalman's test and Gilbert's test (10 Marks) b $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{Y} = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$