15EC53

Visvesvaraya Technological University, Belagavi MODEL QUESTION PAPER 5th Semester, B.E (CBCS) EC Course: 15EC53 - Verilog HDL

Note: (i) Answer Five full questions selecting any one full question from each Module. (ii) Question on a topic of a Module may appear in either its 1st or 2nd question.

Time: 3 Hrs

Max. Marks: 80

		Module-1	
1	a.	Explain a typical design flow for designing VLSI IC circuits using the block diagram.	08
	b.	Explain the different levels of Abstraction used for programming in Verilog.	08
		OR	
2	a.	Explain a top-down design methodology and a bottom-up design methodology.	10
	b.	Explain the factors that have made Verilog HDL popular.	06
		Module-2	
3	a.	Write a note on i) Comments ii) Number Specification iii) X and Z values and iv) Identifiers and Keywords with suitable examples.	10
	b.	Explain a Components of a Verilog Module with a neat block diagram.	06
		OR	
4	a.	Explain \$display and \$monitor tasks with examples.	10
	b.	A 4-bit parallel shift register has I/O pins as shown in the figure below. Write the module definition for this shift register. Include the list of ports and port declarations (no need to show the internals). $reg_in \longrightarrow reg_out$ [3:0] $shift_reg$ (4 bit) [3:0]	06
		Module-3	
5	a.	Explain the instantiation of gates by writing a gate level module by name <i>gates</i> in Verilog.	04

	b.	Explain regular assignment delay in dataflow level of abstraction in Verilog.	04			
	с.	The input output expressions for 1-bit Full Adder are given as sum= a ^ b^ c;	08			
		co = (a & b) (b& c) (c& a). Write the gate level abstraction of 1-bit Full Adder by				
		instantiating and, or, xor gates only.				
OR						
6	a.	Write the Verilog description of 4-bit Ripple carry Adder at Gate level	08			
		Abstraction.				
	b.	Write a program for 4-to-1 Multiplexer, Using Conditional Operators in dataflow	08			
		level of abstraction in Verilog.				
	Module-4					
7	a.	Explain combined port declaration and combined ANSI C style port declaration	04			
		with examples in Verilog.				
	b.	Explain the conditional statements in Verilog.	04			
	с.	Write a behavioral 4 bit counter program in Verilog.	08			
OR						
8	a.	Explain different Loop statements in Verilog.	08			
	b.	Write a Verilog behavioral 4 to 1 Multiplexer program using CASE statement.	08			
	Module-5					
9	a.	Explain the synthesis process with a block diagram.	08			
	b.	Write the VHDL entity declaration of 4- bit Ripple Carry Adder with the help of	08			
		lock diagram of 4- bit Ripple Carry adder.				
OR						
10	a.	Explain the relationship between a design entity and its entity declaration and	08			
		architecture body in VHDL.				
	b.	Explain the declaration of constant, variable and signal in VHDL with examples.	08			
