Visvesvaraya Technological University, Belagavi MODEL QUESTION PAPER

5th Semester, B.E (CBCS) EC/TC Course: 15EC54 - Information Theory and Coding

Note: (i) Answer Five full questions selecting any one full question from each Module. (ii) Question on a topic of a Module may appear in either its 1st or 2nd question.

Time:3	Hrs
--------	-----

Max. Marks: 80

			N	MODULI	E - 1				
1	a.	a. Define Self Information, Entropy and Rate of Information						3	
	b.	b. A Binary Source produces symbols 0 and 1 with probability P and							5
		1-P. Determine Entropy of the source. Sketch the variation of							
		Entropy with P and comment on the result.							
	c.	Prove that Entro	py func	tion att	ains ma	aximum	value w	when the	8
		symbols are emitted with equal probability.							
				OR					
2	a.	For the Markov		shown	in Fig.	Q 2.a.,	find the	e source	12
	Entropy, G_1 , & G_2								
$3/_{4}^{A} \bigcirc \begin{array}{c} c & 1/_{4} \\ P_{1} = \frac{1}{2} & c & 1/_{4} \\ \end{array} \xrightarrow{P_{3}} P_{3} = \frac{1}{2}$									
		P1 = 1	c 1/4	P	a= 1- 2				
Fig. Q 2.a.									
	b.	In a Facsimile pi	icture ti	ransmis	sion of	pictures	, there	is about	4
		3.25 M-pixels per frame. For a good reproduction, 15 brightness levels are necessary. Assuming that all the levels are equally likely to occur, find the rate of transmission if one picture is							
		transmitted in eve							<u> </u>
2	-	A		MODUL			1	1	0
3	a.	Apply Shannon encoding algorithm and generate binary codes for the set of symbols given in table below. Also find efficiency.				8			
		- J	В	С	D	E	F	G	
			1	3/32	3/32	3/32	3/32	2/32	
b. Using Shannon Fano Algorithm, encode the following						following	g set of	5	
		symbols and find			_	Γ_	Г <u> </u>		
		- J	B	C	D	E	F	G	
						1/64	1/64		
	с.	8						3	
		KMI property.							
		A 1							
		B 10							
		C 110 D 1110							
		$\begin{array}{c c} \hline D & 1110 \\ \hline E & 1111 \\ \hline \end{array}$							
				Ľ 1.	111				

		OR					
4	a.	A discrete memory less source has an alphabet of seven symbols	8				
	with probabilities as given below:						
		Sym A B C D E F G					
		P 0.25 0.25 0.125 0.125 0.125 0.0625 0.0625					
	Compute Huffman Code for the set of symbols shown above by moving combined symbols as high as possible and as low as possible. Find efficiency and variance.						
	b.	Write a note on Arithmetic Coding	4				
	c.	Design a ternary code for the set of symbols with probabilities as given below:					
		Sym A B C D E F					
		P 1/3 1/4 1/8 1/8 1/12 1/12 MODULE - 3					
F			05				
5	a.	The Joint probability matrix of a channel is given. Compute H(x), H(y), H(xy), H(x/y) and H(y/x) $P(xy) = \begin{bmatrix} 0.05 & 0 & 0.2 & 0.05 \\ 0 & 0.1 & 0.1 & 0 \\ 0 & 0 & 0.2 & 0.1 \\ 0.05 & 0.05 & 0 & 0.1 \end{bmatrix}$	05				
	b.	A Binary Symmetric Channel has the following Joint probability matrix. Compute Mutual Information, Data transmission Rate and Channel Capacity if $r_s = 100$ sym/sec $P(xy) = \begin{bmatrix} \frac{35}{72} & \frac{25}{72} \\ \frac{5}{72} & \frac{7}{72} \end{bmatrix}$					
	с.	Derive an expression for the Data Transmission Rate of Binary (
		Erasure Channel.					
		OR					
6	а.	An analog source has a bandwidth of 4KHz. The signal is sampled 0 at 2.5 times the Nyquist Rate and each sample is quantized into 256 equally likely levels. Assume that the successive samples are statistically independent. Find the information rate of the source. Can the output of this source be transmitted without error over an analog channel of Bandwidth 50Khz and $S/N = 20$ db. If the output of the source is to be transmitted without error over an analog channel having $S/N = 10$, compute the bandwidth required.					
	b.	Consider a Binary Symmetric Channel whose channel matrix is given by $P(y/x) = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$. Find Channel Capacity.	05				
	c. Write a note on Differential Entropy						
MODULE - 4							

7	a.	Define Hamming Weight, Hamming Distance, Minimum Distance	04					
1	a.	of Linear Block code and Systematic Linear Block Code						
	b.		12					
	D.	5 6 5						
		$S_1 = r_1 + r_2 + r_3 + r_5$, $S_2 = r_1 + r_2 + r_4 + r_6$, $S_3 = r_1 + r_3 + r_4 + r_7$ (i) Find Concreter Matrix (ii) Find Parity Check Matrix (ii) Draw						
		(i) Find Generator Matrix (ii) Find Parity Check Matrix (ii) Draw						
		the Encoder and Decoder Circuit (iii) How many errors can be detected and corrected?						
		OR						
8	a.		08					
		encoder and illustrate the encoding procedure with the message						
		vector [11001101011] by listing the state of the register assuming						
	1.	the right most bit as the earliest bit.						
	b.							
		Write the syndrome calculation circuit and verify the circuit for the masses as a share minimum $d(x) = 1 + x^3$						
		the message polynomial $d(x) = 1+x^3$						
		MODULE - 5						
9	a.	Write short notes on Golay Codes	04					
	b.	Consider the (3,1,2) Convolutional encoder with $g^{(1)} = (110), g^{(2)} =$	12					
		(101) and $g^{(3)} = (111)$.						
		(i) Find Constraint Length.						
		(ii) Find Rate Efficiency.						
		(iii) Draw the encoder diagram						
		(iv) Find the generator Matrix						
		(v) Find the codeword for the message sequence (11101)						
		using matrix approach and frequency domain approach						
10.	a.							
		(i) Write the state transition table						
		(ii) Draw the code tree						
		(iii) Draw the Trellis Diagram						
		(iv) Find the encoded output for the message (11101) by						
		traversing the code tree.						
	b.	Explain Viterbi Decoding algorithm	06					
1	1		1					
