15EC655

Visvesvaraya Technological University, Belagavi MODEL QUESTION PAPER – Set II 6th Semester, B.E (CBCS) EC

Course: 15EC655 - Microelectronics

Time: 3 Hours

Max. Marks: 80

Note: (i) Answer Five full questions selecting any one full question from each Module. (ii) Question on a topic of a Module may appear in either its 1st or/and 2nd question.

MODULE 1						
1	a.	Derive the expression of drain current of a MOS device for triode and	6 Marks			
		saturation region.				
	b.	For the circuit shown in Fig. 1(b) has $I_D = 0.4$ mA and $V_D = 0.5$ V. The	6 Marks			
		NMOS transistor has $V_t = 0.7V$, $\mu nC_{OX} = 100\mu A/V^2$, $L = 1\mu m$ and $W =$				
		32μ m. Find the values of Rs and R _D . Assume = 0.				
		$V_{SS} = -2.5V$				
		Fig. Q (6).				
	с.	Mention the advantages of MOSFETs.	4 Marks			
		OR				
2	a.	Explain the operation of enhancement type NMOS transistor in detail.	8 Marks			
	b.	Discus the role of substrate in the MOS with relevant equations. NMOS	8 Marks			
		transistor has $V_{to} = 0.8V$, $2O_f = 0.7V$ and $= 0.4V^{1/2}$, find Vt when $V_{SB} =$				
		3V.				
MODULE - 2						
3	a.	Draw the T – equivalent circuit model for the MOSFET and explain.	6 Marks			
	b.	Explain the biasing of the MOSFET using constant current source.	6 Marks			

	с.	Derive the expression of $A_V = -g_m R_D$ for the circuit shown in Fig. 3(c).	4 Marks		
		den Vab			
		^D \le			
		t o V D			
		V ₈₅ ()			
		VGIST			
		= Fig. Q 3(C)			
		OR			
4	a.	For the circuit shown in Fig. 4(a), obtain the expressions of R_{in} , A_V , A_{VO} ,	8 Marks		
		$G_{\rm V}$ and $R_{\rm out}$.			
		$A^{\varphi Q}$			
		R Z KD Cc2			
		Sig Cc. (to Vo			
		The Ak			
		V D ob t c t			
		Sig KGZIWTS -			
		-V.			
		22			
		Fig. B 4(a)			
	b.	Explain the role of various internal capacitances in the MOSFET.	8 Marks		
		MODULE - 3			
5	a.	For an NMOS transistor with $W/L = 10$ fabricated in the 0.18µm process,	6 Marks		
		find the values of V _{OV} and V _{GS} required to operate the device at $I_D = 100$ A J			
	<u>l</u> ,	100 μ A. Ignore channel length modulation. Assume $\mu_n C_{OX} = 38 / \mu A / V^2$.	5 Marila		
	D.	Explain the operation of a basic MOSFET current mirror.	5 Marks		
	Ċ.		JIVIAIKS		
6	а	Draw and explain the circuit for generating the number of constant	8 Marks		
	u.	currents of various magnitude of a current steering.	0 1111110		
	b.	Derive the expression for determining the 3-dB frequency ($_{\rm H}$) of an	8 Marks		
		amplifier.			
MODULE - 4					
7	a.	Draw the circuit diagram of a CMOS Common Source amplifier and	8 Marks		
		explain its operation with the help of I-V characteristics and transfer			

		characteristics.				
	b.	Explain what is Cascode amplifier and the basic idea behind the Cascode	4 Marks			
		amplifier.				
	с.	Explain the operation of a Double Cascoding.	4 Marks			
	OR					
8	a.	Draw the high frequency equivalent circuit model of the common source	8 Marks			
		amplifier and explain the analysis using open circuit time constants.				
	b.	Explain the effect of source resistance on transconductance and voltage	8 Marks			
		gain of a CS- amplifier.				
MODULE - 5						
9	a.	Explain the operation of MOS differential pair with a differential input	8 Marks			
		voltage.				
	b.	Obtain the expression of CMRR of an active loaded MOS differential	8 Marks			
		amplifier.				
OR						
10	a.	Draw the diagram of a two stage CMOS op-amp circuit and explain its	8 Marks			
		operation.				
	b.	Draw the frequency response of a differential amplifier due to variation of	8 Marks			
		common - mode gain, differential gain and CMRR with frequency and				
		analyse it.				
