Visvesvaraya Technological University, B elagavi
M ODEL QUESTION PAPER - Set II
$6^{\text {th }}$ Semester, B.E (CBCS) EC
Course: 15EC 655 - M icroelectronics
Time: 3 Hours
M ax. M arks: 80
Note: (i) A nswer Five full questions selecting any one full question from each M odule.
(ii) Question on a topic of a M odule may appear in either its $1^{\text {st }}$ or/and $2^{\text {nd }}$ question. MODULE 1

| 1 | a. | Derive the expression of drain current of a MOS device for triode and
 saturation region. | 6 Marks |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | b. | For the circuit shown in Fig. 1(b) has $\mathrm{I}_{\mathrm{D}}=0.4 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{D}}=0.5 \mathrm{~V}$. The
 NMOS transistor has $\mathrm{V}_{\mathrm{t}}=0.7 \mathrm{~V}, \mu \mathrm{nC} \mathrm{C}_{\mathrm{Ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~L}=1 \mu \mathrm{~m}$ and $\mathrm{W}=$
 $32 \mu \mathrm{~m}$. Find the values of Rs and R_{D} Assume $=0$. | 6 Marks |

	c.	Derive the expression of $A_{V}=-g_{m} R_{D}$ for the circuit shown in Fig. 3(c).	4 Marks
OR			
4	a.	For the circuit shown in Fig. 4(a), obtain the expressions of $\mathrm{R}_{\mathrm{in}}, \mathrm{A}_{\mathrm{v}}, \mathrm{A}_{\mathrm{vo}}$, G_{V} and $\mathrm{R}_{\text {out }}$. Fig. $Q 4(a)$	8 Marks
	b.	Explain the role of various internal capacitances in the MOSFET.	8 Marks
M ODULE - 3			
5	a.	For an NMOS transistor with W/L $=10$ fabricated in the $0.18 \mu \mathrm{~m}$ process, find the values of V_{OV} and V_{GS} required to operate the device at $\mathrm{I}_{\mathrm{D}}=$ $100 \mu \mathrm{~A}$. Ignore channel length modulation. Assume $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}}=387 \mu \mathrm{~A} / \mathrm{V}^{2}$.	6 Marks
	b.	Explain the operation of a basic MOSFET current mirror.	5 Marks
	c.	State and prove the Miller's Theorem.	5 Marks
OR			
6	a.	Draw and explain the circuit for generating the number of constant currents of various magnitude of a current steering.	8 Marks
	b.	Derive the expression for determining the $3-\mathrm{dB}$ frequency $\left(\omega_{\mathrm{H}}\right)$ of an amplifier.	8 Marks
M ODULE - 4			
7	a.	Draw the circuit diagram of a CMOS Common Source amplifier and explain its operation with the help of I-V characteristics and transfer	8 Marks

		characteristics.		
	b.	Explain what is Cascode amplifier and the basic idea behind the Cascode amplifier.	4 Marks	
	c.	Explain the operation of a Double Cascoding.	OR Marks	
8	a.	Draw the high frequency equivalent circuit model of the common source amplifier and explain the analysis using open circuit time constants.	8 Marks	
	b.	Explain the effect of source resistance on transconductance and voltage gain of a CS- amplifier.	8 Marks	
9	a.	Explain the operation of MOS differential pair with a differential input voltage.	8 Marks	
	b.	Obtain the expression of CMRR of an active loaded MOS differential amplifier.	8 Marks	
a. OR				
10	a.	Draw the diagram of a two stage CMOS op-amp circuit and explain its operation.	8 Marks	
	b.Draw the frequency response of a differential amplifier due to variation of common - mode gain, differential gain and CMRR with frequency and analyse it.	8 Marks		

