18AE42

Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Aerodynamics - I

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	
Q.01	a	Derive energy equation using control volume approach.	8
	b	Describe the relationship between stream function and velocity potential equation.	4
	c	Derive an equation for vorticity, ξ	8
		OR	
Q.02	а	In a two dimensional incompressible flow the fluid velocity components are given by	8
		$V_x = x - 4y$, $V_y = -y - 4x$. Show that the flow satisfy the continuity equation and	
		obtain the expression for stream function, if the flow is potential obtain also the	
		expression for velocity potential.	
	b	In the ideal flow around a half body, the free stream velocity is 0.5 m/s and the	8
		strength of the source is 2 m ² /s. Predict the fluid velocity and its direction at a point, r	
		$= 1.0 \text{ and } \theta = 120^{\circ}.$	
	с	With a neat sketch explain the concept of circulation	4
		Module-2	
Q. 03	а	With a neat sketch illustrate the typical aerodynamic characteristics at low speeds.	6
	b	Calculate the velocity of bullet fire in standard air if the mach angle is 30° . Take R = 287.14	4
		J/kg k and k = 1.4 for air. Assume temperature as 15° C.	
	c	Outline the Types of drag-Definitions with suitable examples	10
		OR	
Q.04	а	Explain the following modified NACA four and five digit series	6
		1 series: NACA 16-123	
		6 series: NACA 61 ₂ -315	
		7 series: NACA 712A315	
	b	Consider two different points on the surface of an airplane wing flying at 80 m/s. The	6
		pressure coefficient and flow velocity at point 1 are -1.5 and 110 m/s, respectively.	
		The pressure coefficient at point 2 is -0.8. Assuming incompressible flow, calculate	
		the flow velocity at point 2.	
	c	A light airplane weight 10000 N, its wing span measures 12 m, its chord measures 1.8	8
	1	m, and a payload of 2000 N is anticipated. Predict (a) the take-off speed if an AOA of	
		8^{0} is desired, (b) the stall speed of the conventional airfoil (c) the power required by	
		the airfoil during cruise at 50 m/s. Assume $C_1 = 1 @ 8^0$ AOA and $C_{lmax} = 1.72$.	
		Module-3	
Q. 05	a	Briefly explain the following elementary flows with neat sketches and write Ψ and ϕ	8
	1	for each of them (a) Uniform flow (b) Source and sink flow	
	b	Derive pressure coefficient using non-lifting flow over a circular cylinder, find the	8
	1	location on the surface of cylinder where the surface pressure equals the free stream	
	1	pressure.	
	с	Write a short note on D'Alembert's paradox	4
	-	OR	

18AE42

Q. 06	a	With a neat sketch explain the kelvin's circulation theorem and the starting vortex.	4
	b	Derive an expression for lift curve slope for a symmetric airfoil using classical thin	8
		airfoil theory.	
	с	Derive an expression for lift curve slope for a symmetric airfoil using classical thin	8
		airfoil theory.	
		Module-4	
Q. 07	а	Derive the expression for the induced angle of attack and induced drag coefficient	8
		using elliptical lift distribution.	
	b	Derive the expression for the induced angle of attack and induced drag coefficient	8
		using general lift distribution.	
	с	Discuss lifting surface theory and vortex lattice method for wing	4
		OR	
Q. 08	а	Derive an expression for lift coefficient and induced drag coefficient in terms of	10
		circulation strength $\Gamma(y)$ for a finite wing through Prandtl's classical lifting line	
		theory.	
	b	Derive the expression for the velocity induced by infinite vortex filament using the	5
		Biot-savart law.	
	c	Derive the Vortex filament: Infinite and semi-infinite vortex filament expressions for	5
		incompressible flow.	
		Module-5	
Q. 09	а	Explain the following with a neat sketches	8
		A. Drag-divergence Mach number and sound barrier	
		B. Transonic area rule	
	b	Discuss the advantages and disadvantages of high lift devices	6
	c	Explain the difference between thick and thin airfoils	6
		OR	
Q. 10	a	Write a short note on Source panel & vortex latice method.	6
	b	Outline the leading-edge and trailing edge slats aerodynamic characteristics	6
	С	Outline the Subsonic and Supersonic leading edges with relevant sketches	8