Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

18AS44 - MECHANISMS AND MACHINE THEORY
TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.
02.
03.

Module -1			*Bloom's Taxonomy Level	Marks
Q. 01	a	Define the following : i. Kinematic chain \& pair ii.Mechanism iii,Degree of freedom	L1	8
	b	Explain the inversions of their slider crank mechanism with examples.	L1	12
	c			
OR				
Q. 02	a	Sketch and explain the following i. Elliptical Trammel ii. Whitworth quick return motion Mechanism	L1	10
	b	With a neat sketch, explain the condition for correct steering for Ackelmann's mechanism	L1	10
	c			
Q. 03	a PQRS in a four bar chain with link PS fixed. The length of the link are $\mathrm{PQ}=62.5 \mathrm{~mm}, \mathrm{QR}=175 \mathrm{~mm}, \mathrm{RS}=112.5 \mathrm{~mm}$ and $\mathrm{PS}=200 \mathrm{~mm}$. the crank PQ rotates at $10 \mathrm{rad} / \mathrm{sec}$ clockwise. Draw the velocity and acceleration diagram when angles $\mathrm{QPS}=60^{\circ}$ and Q and R lie on the same side PS. Find the angular velocity and angular acceleration of link QR and RS.		L3	10
	b In the mechanism, as shown in Fig.8, the crank OA rotates at 20r.p.m. anticlockwise and gives motion to the sliding blocks B and D . The dimensions of the various links are $\mathrm{OA}=300 \mathrm{~mm}$; Angle $\mathrm{OAB} 30^{\circ}, \mathrm{AB}=$ $1200 \mathrm{~mm} ; B C=450 \mathrm{~mm}$ and $C D=450 \mathrm{~mm}$. For the given configuration, Determine: 1. velocities of sliding at B and D, 2. Angular velocity of CD, 3. linear acceleration of D , and 4 . angular acceleration of CD.		L3	10
c				
OR				
Q. 04	a	Determine the required input torque T1 for static equilibrium of the mechanism shown in Figure. Torques T2 and T3 are pure torques, having magnitudes of 10N.m - m and 7 Nm , respectively.	L3	10

	b	A four-link mechanism with the following dimensions is acted upon by a force $80 \mathrm{~N}, / _150$ on the link $\mathrm{DC}, \mathrm{AD}=500 \mathrm{~mm}, \mathrm{AB}=400 \mathrm{~mm}, \mathrm{BC}=$ $1000 \mathrm{~mm}, \mathrm{DC}=750 \mathrm{~mm}, \mathrm{DE}=350 \mathrm{~mm}$. Determine the input torque T on the link AB for the static equilibrium of the mechanism for the given configuration.	L3	10
	c			
		Module-3		
$\begin{aligned} & \mathrm{Q} . \\ & 05 \end{aligned}$	a	Derive an expression to determine the length of path of contact between two spur gears of different size.	L2	10
	b	A pinion having 20 teeth engages with an internal gear having 80 teeth. If the gears have involute profiled teeth with 20° pressure angle, module of 10 mm and addendum of 10 mm , find the path of contact, arc of contact and the contact ratio.	L3	10
	c			
		OR		
$\begin{aligned} & \mathrm{Q} . \\ & 06 \end{aligned}$	a	An epicyclic gear train is arranged as shown in fig. the internal gear D has 90 teeth and the sun gear A has 40 teeth. The two planet gears B\&C are identical and they are attached to an arm as shown. How many revolutions does the arm make. (i) When A makes one revolution clockwise and D makes half a revolution counter clockwise ii) when A makes one revolution clockwise and D remains stationary.	L3	10
	b	In an epicyclic gear of the 'sun and planet' type shown in Fig. the pitch circle diameter of the internally toothed ring is to be 224 mm and the module 4 mm . When the ring D is stationary, the spider A, which carries three planet wheels C of equal size, is to make one revolution in the same sense as the	L3	10

| | | sun wheel B for every five revolutions of the driving spindle carrying the sun
 wheel B. Determine suitable numbers of teeth for all the wheels. | |
| :--- | :--- | :--- | :--- | :--- |

| | | i.
 ii.
 iii.
 The ship turns right at an radius of 250 m with a speed of 22 kmph
 The ship pitches with the bow rising at an angular velocity of $0.85 \mathrm{rad} / \mathrm{s}$
 The ship rolls at an angular velocity of $0.15 \mathrm{rad} / \mathrm{s}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | c | | | |

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.

