Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

18AS44 - MECHANISMS AND MACHINE THEORY

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**. 02. 03.

	*Bloom's Taxonomy Level	Marks						
Q.01	a	Define the following :	L1	8				
		i. Kinematic chain & pair ii.Mechanism iii,Degree of freedom						
	b	Explain the inversions of their slider crank mechanism with examples.	L1	12				
	с							
	OR							
Q.02	а	Sketch and explain the following	L1	10				
		i. Elliptical Trammel						
	h	11. With a neat sketch, explain the condition for correct steering for Ackelmann's	T 1	10				
	U	mechanism	LI	10				
	с							
	1	Module-2						
Q. 03	a	PQRS in a four bar chain with link PS fixed. The length of the link are PQ=62.5mm,QR=175mm,RS=112.5mm and PS=200mm. the crank PQ rotates at 10 rad/sec clockwise. Draw the velocity and acceleration diagram when angles QPS=60° and Q and R lie on the same side PS. Find the angular velocity and angular acceleration of link QR and RS.	L3	10				
	b	In the mechanism, as shown in Fig.8, the crank OA rotates at 20r.p.m. anticlockwise and gives motion to the sliding blocks B and D. The dimensions of the various links are OA = 300 mm; Angle OAB 30° , AB = 1200 mm; BC = 450 mm and CD = 450 mm. For the given configuration, Determine: 1. velocities of sliding at B and D, 2. Angular velocity of CD, 3. linear acceleration of D, and 4. angular acceleration of CD.	L3	10				
	c							
	-	OR						
Q.04	a	Determine the required input torque T1 for static equilibrium of the mechanism shown in Figure. Torques T2 and T3 are pure torques, having magnitudes of 10N.m • m and 7 Nm, respectively.	L3	10				

18AS44

		\tilde{o}_1 r_3		
		$O_1 B = 80 mm$		
		$BC = 160 mm \\ O_3C = 100 mm \\ O_1O_2 = 200 mm $		
	b	A four-link mechanism with the following dimensions is acted upon by a	L3	10
		force 80 N, $/_{150}$ on the link DC, AD = 500mm, AB = 400mm, BC =		
		1000mm, $DC = 750mm$, $DE=350mm$. Determine the input torque T on the link AB for the static equilibrium of the machanism for the given		
		configuration.		
		С		
		(3) /(4)		
		B		
		(2) $F = 80 \text{ N}$		
		$ \begin{array}{cccc} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		
	C	Figure 10		
		Module-3		
Q.	a	Derive an expression to determine the length of path of contact between two	L2	10
05	h	spur gears of different size.	13	10
	U	the gears have involute profiled teeth with 20 ° pressure angle, module of	25	10
		the contact ratio.		
	c	OD		
0	а	OR An enjoyelic gear train is arranged as shown in fig. the internal gear D has 90	13	10
Q. 06	a	teeth and the sun gear A has 40 teeth. The two planet gears B&C are	15	10
		identical and they are attached to an arm as shown. How many revolutions		
		does the arm make. (i) When A makes one revolution clockwise and D makes half a revolution counter clockwise ii) when A makes one revolution		
		clockwise and D remains stationary.		
		Arm		
		AIT		
		$(A \sim)$		
		Oc D		
	b	In an epicyclic gear of the 'sun and planet' type shown in Fig. the pitch	L3	10
	b	In an epicyclic gear of the 'sun and planet' type shown in Fig. the pitch circle diameter of the internally toothed ring is to be 224 mm and the module	L3	10
	b	In an epicyclic gear of the 'sun and planet' type shown in Fig. the pitch circle diameter of the internally toothed ring is to be 224 mm and the module 4 mm. When the ring D is stationary, the spider A, which carries three planet	L3	10

18AS44

		sun wheel B for every five revolutions of the driving spindle carrying the sun wheel B. Determine suitable numbers of teeth for all the wheels.							
		OC D							
		A							
				C.	\sim				
					1				
	c			Module-4	1				
Q.	a	A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg,400 kg and 200 kg					L3	10	
07		respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes measured from A at 300 mm 400 mm and 700 mm. The angles between the creaks measured							
		anticlockwise a							
		placed in planes	s X and Y. Th	ne distance betwe	een the planes A	and X is 100 1	nm, between X		
		and Y is 400 m	m and betwee	en Y and D is 200	0 mm. If the bal	ancing masses	revolve at a		
	b	Four masses A,	B, C and D a	is shown below a	are to be comple	tely balanced.		L3	10
			А	В	С	D			
		Mass(Kg)	-	30	50	40			
		Radius(mm)	180	240	120	150			
		The planes cont containing B an	taining masse id C is 90°. B	s B and C are 30 and C make ang	0 mm apart. Th gles of 210° and	e angle betwee 120° respectiv	n planes ely with D in the		
		same sense. Find : 1. The magnitude and the angular position of mass A + and							
		2. The position	of planes A a	and D	inuss i i , und				
	с								
	T			OR					
Q. 08	a	Derive the follo Variation is trac	wing express ctive force; (b	ions, for an unco) Swaying coupl	oupled two cyline; and (c) Ham	ider locomotive ner blow.	e engine:(<i>a</i>)	L2	10
	b	A five cylinder $1/4^\circ$ apart the	in-line engine	e running at 750	r.p.m. has succe	essive cranks	The niston stroke	L3	10
		is 225 mm and	the ratio of	the connecting	rod to the cran	k is 4. Examin	the engine for		
		balance of primary and secondary forces and couples. Find the maximum values of these							
		and the position of the central crank at which these maximum values occur. The							
	c			zymidens 15 kg.				L1	
	_	T		Module-	5				
Q.	a	The sum of D			-11		a in the said	L3	10
09		ne arms of H	lartnell gove	in a circle of d	lai length. Whe	en the sleeve i m (the arms	s in the mid-		
		the mid-position	on) Neglecti	ing friction, the	equilibrium s	peed for this r	position is 300		
		rpm Maximun	n variation o	of speed, taking	friction into a	ccount, is to \pm	\pm 5% of the		
	mid-position speed for a maximum sleeve movement of 25mm. The sleeve mass 5 kg and the friction at the sleeve is 30N								
								т 1	10
	b	Explain about	the Control	ling force diagr	am and stabili	ty for porter g	governor	LI	10
0.	а	Explain the ef	fect of Gyro	scope couple o	n a Aeroplane			L2	10
10	<u> </u>								
	b	The Turbine r	otor of a ship	p has 2.4 tones	and rotates at	1750 rpm clo	ckwise The	L3	10
		radius of gyration of the rotor is 300mm. determine the gyroscopic couple and its effect when							

18AS44

	i. ii. iii.	The ship turns right at an radius of 250 m with a speed of 22kmph The ship pitches with the bow rising at an angular velocity of 0.85 rad/s and The ship rolls at an angular velocity of 0.15 rad/s	
c			

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.