Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

18AS45 - INTRODUCTION TO SPACE TECHNOLOGY

TIME: 03 Hours

Max. Marks: 100

18AS45

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**. 02.

03.

			*Bloom's	
Module -1			Taxonomy	Marks
			Level	
Q.01	a	Explain the concept of Aerospace plane.	L1	
	b	Explain in detail about Liquid rocket propulsion with turbo pump feed	L1	
		system neat sketch and its Advantages & Disadvantages.		
	с	Derive Tsiolkovsky rocket equation.	L2	
OR				
Q.02	a	Derive Sounding Rocket equation	L2	
	b	Consider the single-stage rocket and the double-stage rocket, Both	L3	
		rockets have the same total mass $M_{total} = 5000$ kg and the same specific		
		impulse $Isp = 350$ s. Both rockets have the same payload mass $ML = 50$		
		kg. The total structural mass of the double-stage rocket is $Vs1 + Ms2 =$		
		400 kg + 100 kg = 500 kg, which is the structural mass of the single-stage		
		rocket. The total propellant mass of the double-stage rocket is Mp1 +		
		Mp2 = 3450 + 1000 = 4450 kg, which is the propellant mass of the		
		single-stage rocket. Both rockets are boosting the same payload mass of		
		50 kg into space. Calculate and compare the burnout velocities for the		
		rockets.		
	с	Write Short notes on: i) Vehicle sizing ii) Trade-off ratios.	L1	
Module-2				
Q. 03	а	Derive Ballistic Reentry: Vehicle Deceleration, Trajectory Curvature:	L2	
		Small KD & Free-Fall: High KD.		
	b	Derive Double Dip Reentry.	L2	
	с			
OR				
Q.04	а	Consider a solid mass in shape of sphere entering the earth's atmosphere	L3	
		at 13km/s and at an angle 15 deg below the local horizontal. The sphere		
		diameter is 1m. The drag coefficient of the sphere at hypersonic speeds is		
		approximately 1. The density of the mass is 6963 kg/m3. Calculate i) the		
		altitude at which maximum deceleration occurs. ii) the value of the		
		maximum deceleration.iii) the velocity at which the sphere would impact		
		the earth's surface.		
	b	Explain briefly Aerobraking &Lifting body Reentry	L1	
	с			
Q. 05	a	Derive Elliptical Orbits and its Assumptions	L2	
	b	At two points on a geocentric orbit, the altitude and true anomaly are z1	L3	
		=1545 km, θ 1= 126_ and z2 =852 km, θ 2=58 respectively. Find (a) the		

18AS45

r			· · · · · · · · · · · · · · · · · · ·	
		eccentricity, (b) the altitude of perigee, (c) the semi major axis, and (d)		
		the period.		
	с	An Earth satellite is in an orbit with a perigee altitude of 400 km and an	L3	
		eccentricity of 0.6. Find (a) the perigee velocity (b) the apogee radius (c)		
		the apogee velocity (d) the orbit period (e) the satellite velocity when its		
		altitude is 3622 km (f) the true anomaly at altitude 3622 km (g) the flight		
		path angle at altitude 3622 k		
OR				
Q. 06	a	Explain briefly about Bielliptical Transfer & Plane change	L1	
	b	Explain briefly about In-Plane Orbit Changes & Hohmann Transfers	L1	
	с	A two-impulse Earth-orbit transfer where the first impulse occurs after	L3	
		perigee passage on the transfer ellipse. The inner and outer circular orbits		
		have radii $r_{1=2.5RE}$ and $r_{2=6RE}$, respectivelywhere RE is the radius of		
		the Earth. The transfer orbit has a perigee radius of 1.9RE and an apogee		
		radius of 8 5RF. Determine (a) the magnitude and direction of the first		
		impulse and (b) the time of flight on the transfer ellipse		
		Modulo A		
0.07	0	Derive the Torque free Avi symmetric rigid body	1.2	
Q. 07	a h	Write short notes on :		
	U	Attitude Control for Spinning Spacecraft	LI	
		1. Autude Control for Spinning Spacecraft,	т 1	
	С	Write short notes on Attitude Determination.	LI	
OR				
Q. 08	a	Derive The Yo-Yo Mechanism,	L2	
	b	Write short notes on	L1	
		i. Gravity – Gradient Satellite		
	C	Write short notes on	I 1	
	Ũ	i Dual Spin Spacecraft	21	
Q. 09	a	Explain mission phases and core operations for team responsibilities.	L1	
	b	Explain Standard operations practices.	L1	
	c			
-				
Q. 10	a	Explain high level space mission operations architecture with neat sketch.	L1	
	b	Explain Mission Diversity	L1	
	с			

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.