Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination Title-Fluid Mechanics

TIME: 03 Hours

Max. Marks: 100

Note:

Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	*Bloom's Taxonomy Level	CO	Marks
Q.01	a	Define Surface Tension. Derive an expression for Capillary rise	L1,L2	CO1	10
		and Capillary fall of water in a glass tube.			
	b	A 15 cm diameter vertical cylinder rotates concentrically inside another cylinder of diameter 15.10 cm. Both cylinders are 25 cm high. The space between the cylinders is filled with a liquid whose viscosity is unknown. If a torque of 12 Nm is required to rotate the inner cylinder at 100 rpm, determine the viscosity of the fluid.	L5	CO1	10
OR				~~ .	
Q.02	a	With a neat sketch explain U-tube Differential Manometer	L1,L2	CO1	10
	b	A circular plate 3 metre diameter is submerged in water as shown in figure (a). Its greatest and least depths are below the surfaces being 2 metre and 1 metre respectively. Find: i) the total pressure on front face of the plate, and ii) the position of centre of pressure.	L5	CO1	10
0.03	9	Explain conditions of equilibrium for a floating and submarged	1.2	CO^{2}	8
Q. 05	a	bodies	L2	02	0
	b	Derive an experimental method of determination of metacentric height of a floating body	L2	CO2	6
	c	Prove that velocity potential function satisfy the laplace equation	L5	CO2	6
0.04	9	Obtain an expression for continuity equation for a three-	1215	CO^2	10
Q.04	u	dimensional steady incompressible flow.	12, 15	02	10
	b	Explain different rypes of fluid flow.	L1,L2	CO2	10
Module-3					
Q. 05	а	State Bernoulli's theorem for steady flow of an incompressible fluid. Derive an expression for Bernoulli's equation from first principle and state the assumptions made for such a derivation.	L1, L3	CO3	10
	b	Water is flowing through a pipe having diameter 300mm and 200mm at the bottom and upper end respectivety. The intensity of pressure at the bottom end is 24.525 N/cm ² and the pressure at upperend is 9.81 N/cm ² . Determine the difference in datum head if the rate of flow through pipe is 40 lit/second.	L5	CO3	10
0.06		UR Derive an error for the error in 1 Discharge through the	1.2	CO2	10
Q. 06	а	berive an expression for theoretical Discharge through the triangular notch or weir.	L2	003	10
	b	A venturimeter is used for measurement of discharge of water in a	L5	CO3	10
		horizontal pipeline. If the ratio of upstream pipe diameter to that of throat is 2:1, upstream diameter is 300 mm, the difference of pressure between the throat and upstream is equal to 3 m head of			

18AU42

		water and loss of head through meter is $1/8^{th}$ of the throat velocity			
		head, Calculate discharge in the pipe.			
		Module-4			
Q. 07	а	Using Buckingham's π -theorem, find the discharge Q consumed by	L3	CO4	10
		an oil ring, where d is the internal diameter of the ring, N is			
		rotational speed, ρ is density, μ is viscosity, σ is surface tension			
		and w is the specific weight of oil.			
	b	a. Define similitude. Explain types of similarities.	L1,L2	CO4	10
		OR			
Q. 08	а	A 150 mm diameter pipe reduces in diameter abruptly to 100 mm	L5	CO4	10
		diameter. If the pipe carries water at 30 litres per second, calculate			
		the pressure loss across the contraction. Take the co-efficient of			
		contraction as 0.6.			
	b	Derive an expression for the loss of head due to sudden	L3	CO4	10
		enlargement of a pipe			
Module-5					
Q. 09	а	Derive a Hagen-poiseuille equation for shear stress distribution and	L2	CO5	10
		velocity distribution			
	b	Explain boundary layer concept for flow over solid body. Derive	L2,L4	CO5	10
		displacement thickness for flow over thin plate			
OR					
Q. 10	a	Derive an expression for lift and drag	L1,L4	CO5	10
	b	Explain propagation of pressure waves in a compressible fluid.	L2	CO5	10

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.