Model Question Paper-2 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination Title-Fluid Mechanics

TIME: 03 Hours

Max. Marks: 100

18AU42

Note:

Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	*Bloom's Taxonomy Level	CO	Marks
Q.01	a	A vertical gap 2.2 cm of infinite extent contains a fluid of viscosity	L5	CO1	10
		2 Ns/m ² and specific gravity 0.9. A metallic plate 1.2m x 1.2m x			
		0.2cm is to be lifted up with a constant velocity of 0.15 m/s,			
		through the gap. If the plate is in middle of gap, find the force			
		required to lift the plate upwards. The weight of plate is 40 N.			
	b	Derive an expression for Capillary rise of water in a glass tube	L2	CO1	6
	с	Explain vapour pressure and cavitation	L2	CO1	4
OR					
Q.02	a	An inverted U-tube manometer is connected to two horizontal pipes A and B through which water is flowing. The vertical distance between the axis of these pipes is 30 cm. When an oil of specific gravity 0.8 is used as a gauge fluid, the vertical heights of water columns in the two limbs of the inverted manometer (when measured from the respective centre lines of the pipes) are found to be same and equal to 35 cm. Determine the difference of pressure hotween the pipes	L5	CO1	10
	h	Derive an expression for total piessure and center of pressure for	1213	CO1	10
		an inclined plane surface submerged in liquid	L2, L3	COI	10
		Module-2			
0.03	а	A cylindrical buoy is 2 m in diameter 2.5 m long and weighs 2.2	L5	CO2	10
		metric tons. The density of sea water is 1025 kg/m^3 . Show that the	20	002	10
		body cannot float with its axis vertical.			
	b	Derive an expression for the metacentric height of a floating body	L2	CO2	10
OR					_
Q.04	a	Derive an expression for continuity equation in 3D, in differential form for steady incompressible fluid flow.	L2	CO2	10
	b	Prove that velocity potential function and stream function satisfy	L5	CO2	10
		the laplace equation			
		Module-3			
Q. 05	a	Derive Bemotrlli's equation from Euler's equation and also explain terms used. State Bemoulli's theorem for steady flow of an incompressible fluid	L1,L2	CO3	10
	b	A pump has a tapering pipe running full of water. The pipe is placed vertically with the diameters at the base and top being 1.2 m and 0.6 m respectively. The pressure at the upper end is 240 mm of Hg vacuum, while the pressure at the lower end is 15 kN/m^2 . Assume the head loss to be 20% of difference of velocity head. Calculate the discharge, the flow is vertically upwards and difference of elevation is 3.9 m.	L5	CO3	10

OR					
0.06 a Derive an expression for discharge through orifice meter			12	CO3	10
Q . 00	h	A vertical venturimeter has an area ratio 5. It has a throat diameter		CO3	10
	U	of 10 cm. When oil of specific gravity 0.8 flows through it the	LJ	005	10
		mercury in the differential gauge indicates a difference in height of			
		12 cm Find the discharge through the venturimeter. Take $C_1 =$			
		0.98			
Module-4					
Q. 07	a	Derive on the basis of dimensional analysis suitable parameters to	L5	CO4	10
		present the thrust developed by a propeller. Assume that the thrust			
		P depends upon the angular velocity ω , speed of advance V,			
		diameter D, dynamic viscosity μ , mass density ρ , elasticity of the			
		fluid medium which can be denoted by the speed of sound in the			
		medium C .			
	b	Define and derive an expression for Reynold's number, Froude's	L1, L2	CO4	10
		Number and Weber's Number, Mach's number and Euler's			
		number.			
OR					
Q. 08	а	Derive Darcy's formula to calculate the frictional head loss in a	L2	CO4	10
		pipe.			
	b	At a sudden enlargement of a water main from 240mm to 480 mm	L5	CO4	10
		diameter, the hydraulic gradient rises by 10 mm. Estimate the rate			
		of flow.			
Module-5					
Q. 09	а	Derive an expression for lift and drag	L1, L2	CO5	10
	b	Derive momentum thickness and energy thickness for flow over	L2	CO5	10
		thin plate.			
OR					
Q. 10	а	Prove that maximum velocity is equal to one and a half times the	L4, L5	CO5	10
		average velocity for viscous flow between two parallel plates when			
		both plates are stationary.			
	b	Derive an expression for velocity of sound wave in a fluid	L2	CO5	10

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.