Model Question Paper-2 with effect from 2019-20 (CBCS Scheme)

USN

TIME: 03 Hours

Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module -1					
			Marks	CO	BT/CL
Q. 01	a	With neat sketch explain Ratchet and Pawl mechanism.	07	CO_{1}	L1, L2, L3
	b	Briefly explain condition for correct steering in motor car.	06	CO_{1}	L1, L2, L3
	c	With neat sketch explain Elliptical trammel and oldhaum's coupling.	07	CO_{1}	L1, L2, L3
		OR			
Q. 02	a	Explain inversions of four bar chain mechanism	10	CO_{1}	L1, L2, L3
	b	Mention inversions of single slider crank chain and explain any two.	10	CO_{1}	L1, L2, L3
		Module-2			
Q. 03	a	A four bar mechanism ABCD is made up of four links, pin jointed at the ends. AD is fixed link which is 180 mm long. The links AB, BC and CD are $90 \mathrm{~mm}, 120 \mathrm{~mm}$ and 120 mm long respectively. At certain instant the link $A B$ makes an angle of 60° with the link $A D$. If the link $A B$ rotates at a uniform speed of 100 rpm clockwise determine, I. Angular velocity of the links BC and CD and II. Angular acceleration of the links CD and CB	15	CO_{3}	L1, L2, L3
	b	What is Corolis component of acceleration? Explain with an example and neat sketch.	05	CO_{3}	L1, L2, L3
		OR			L1, L2, L3
Q. 04	a	In a slider crank mechanism shown in fig 4(a) the crank $\mathrm{OA}=300 \mathrm{~mm}$ and connecting rod $\mathrm{AB}=1200 \mathrm{~mm}$. the crank OA is turned 30° from inner dead centre. Locate all the instantaneous centres. If the crank rotates at $15 \mathrm{rad} / \mathrm{sec}$ clock wise, find (i) velocity of slider B and (ii) Angular velocity of connecting rod AB .	10	CO_{3}	
	b	Define instantaneous centre and state types of instantaneous centre.	04	CO_{3}	L1, L2, L3
	c	State and prove kennedy's Theorem.	06	CO_{3}	L1, L2, L3
		Module-3			
Q. 05	a	Determine the velocity and acceleration of the piston by Klein's construction to the following specification. Stroke $=300 \mathrm{~mm}$, Ratio of length of connecting rod to crank length $=4$, Speed of engine $=300 \mathrm{rpm}$, Position of crank $=45^{0}$ with inner dead centre.	10	CO_{3}	L1, L2, L3
	b	Explain Klein's construction for slider crank mechanism	10	CO_{3}	L1, L2, L3
		OR			

18AU43

