18AU43

Model Question Paper-2 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

KINEMATICS OF MACHINES

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

	<u>.</u>	Module -1			
			Marks	CO	BT/CL
Q.01	a	With neat sketch explain Ratchet and Pawl mechanism.	07	CO ₁	L1, L2, L3
	b	Briefly explain condition for correct steering in motor car.	06	CO ₁	L1, L2, L3
	c	With neat sketch explain Elliptical trammel and oldhaum's coupling.	07	CO ₁	L1, L2, L3
		OR			
Q.02	a	Explain inversions of four bar chain mechanism	10	CO ₁	L1, L2, L3
	b	Mention inversions of single slider crank chain and explain any two.	10	CO ₁	L1, L2, L3
		Module-2			
Q. 03	а	A four bar mechanism ABCD is made up of four links, pin jointed at the	15	CO ₃	L1, L2, L3
		ends. AD is fixed link which is 180mm long. The links AB, BC and CD			
		are 90mm, 120mm and 120mm long respectively. At certain instant the			
		link AB makes an angle of 60° with the link AD. If the link AB rotates at a			
		uniform speed of 100rpm clockwise determine,			
		I. Angular velocity of the links BC and CD and			
		II. Angular acceleration of the links CD and CB			
	1		0.5		
	b	what is Corolis component of acceleration? Explain with an example and	05	CO_3	L1, L2, L3
		neat sketch.			
		OR			
0.04	а	In a slider crank mechanism shown in fig $A(a)$ the crank $OA = 300$ mm and	10	CO	L1 L2 L3
Q.04	u	connecting rod AB =1200mm the crank OA is turned 30° from inner dead	10	003	L1, L2, L0
		centre. Locate all the instantaneous centres. If the crank rotates at			
		15rad/sec clock wise, find (i) velocity of slider B and (ii) Angular velocity			
		of connecting rod AB.			
		A			
	h	Define instantaneous centre and state types of instantaneous centre	0.4	CO	111213
		State and prove kennedy's Theorem	04	CO_3	
		Module_3	00		
0.05	а	Determine the velocity and acceleration of the niston by Klein's	10	CO	L1. L2. L3
Q. 05	a	construction to the following specification Stroke -300 mm Ratio of	10		, , _ _,
		length of connecting rod to crank length = 4 Sneed of engine -300 rpm			
		Position of crank = 45° with inner dead centre.			
	b	Explain Klein's construction for slider crank mechanism	10	CO ₂	L1, L2, L3
		OR	10		, , -

18AU43

Q. 06	а	Derive an expression for velocity and acceleration of the piston in a	10	CO ₃	L1, L2, L3
		reciprocating mechanism by using complex algebra method.			
	b	In a 4 bar mechanism ABCD link AB =300mm, BC=360mm, CD=360mm	10	CO ₃	L1, L2, L3
		and the fixed link AD=600mm. the angle of link AB with fixed link AD is			
		60 degree. The AB has an angular velocity of 10rsd/sec and angular			
		acceleration of 30rad/sec ² both clockwise. Determine the angular velocity			
		and angular acceleration of link BC and CD by Raven's approach.			
		Module-4			
Q. 07	а	Derive an expression for Minimum number of teeth on a gear to avoid	10	CO ₅	L1, L2, L3
		interference and Minimum number of teeth on a pinion to avoid			
		interference.			
	b	The following are particulars of a pair of spur gears. Number of teeth on	10	CO ₅	L1, L2, L3
		pinion =19. Number of teeth on gear = 47. Pressure angle = 20° .			
		Module=6.5mm Addendum = 6.5mm. Determine,			
		I. Number of pairs of teeth in contact.			
		II. Angle turned through by pinion and gear when one pair of teeth is			
		in contact.			
		III. Ratio of velocity of sliding to rolling velocity at the instant the			
		engagement begins, the engagement terminates and at pitch point.			
0.00		OR	10	~~~	
Q. 08	а	An epicyclic gear train is compound of fixed annular wheel A having 150	10	CO ₅	L1, L2, L3
		teeth. Meshing with A is wheel B, which drives wheel D through idler			
		wheel C. D' being concentric with A wheel B and C are carried on an arm			
		which rotates clockwise at 100rpm about the axis of A and D. If the wheels			
		B and D have 25 and 40 teeth respectively, find the number of teeth on C and the speed and some of rotation of C			
	h	In an internal wheel P with 80 teeth is keyed to a shaft F . A fived internal	10	CO	111213
	U	wheel C with 82 teeth is concentric with B. A compound wheels revolve	10	CO_5	11, 12, 15
		freely on a pin which projects from a disc keyed to a shaft A co-avail with			
		F if all the wheels have the same nitch and shaft A makes 800rnm what is			
		the speed of shaft F? Sketch the arrangement			
		Module-5			
0.09	а	A vertical spindle supplied with a plane horizontal face at its lower end is	20	Co	L1, L2, L3
X . 07		actuated by a cam keved to a uniformly rotating shaft. The spindle is raised		0.04	, , -
		through a distance of 30mm in one fourth remains at rest in one fourth is			
		lowered in one third and remains at rest for the remainder of a complete			
		lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as			
		lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and			
		through a distance of 30mm in one fourth remains at rest in one fourth is lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and descent. However during decent deceleration period is half the acceleration			
		through a distance of 30mm in one fourth remains at rest in one fourth is lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and descent. However during decent deceleration period is half the acceleration period. The axis of the spindle passes through cam axis. The cam rotates in			
		through a distance of 30mm in one fourth remains at rest in one fourth is lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and descent. However during decent deceleration period is half the acceleration period. The axis of the spindle passes through cam axis. The cam rotates in anti clockwise direction.			
		through a distance of 30mm in one fourth remains at rest in one fourth is lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and descent. However during decent deceleration period is half the acceleration period. The axis of the spindle passes through cam axis. The cam rotates in anti clockwise direction. OR			
Q. 10	a	through a distance of 30mm in one fourth remains at rest in one fourth is lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and descent. However during decent deceleration period is half the acceleration period. The axis of the spindle passes through cam axis. The cam rotates in anti clockwise direction. OR A push rod operated by a cam is to rise and fall with SHM along an	20	Co4	L1, L2, L3
Q. 10	a	through a distance of 30mm in one fourth remains at rest in one fourth is lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and descent. However during decent deceleration period is half the acceleration period. The axis of the spindle passes through cam axis. The cam rotates in anti clockwise direction. OR A push rod operated by a cam is to rise and fall with SHM along an inclined straight path. The least radius of the cam is 50mm and the push	20	C04	L1, L2, L3
Q. 10	a	through a distance of 30mm in one fourth remains at rest in one fourth is lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and descent. However during decent deceleration period is half the acceleration period. The axis of the spindle passes through cam axis. The cam rotates in anti clockwise direction. OR A push rod operated by a cam is to rise and fall with SHM along an inclined straight path. The least radius of the cam is 50mm and the push rod is fitted at its lower end with a roller of 30mm diameter. When it its	20	Co ₄	L1, L2, L3
Q. 10	a	through a distance of 30mm in one fourth remains at rest in one fourth is lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and descent. However during decent deceleration period is half the acceleration period. The axis of the spindle passes through cam axis. The cam rotates in anti clockwise direction.	20	Co4	L1, L2, L3
Q. 10	a	through a distance of 30mm in one fourth remains at rest in one fourth is lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and descent. However during decent deceleration period is half the acceleration period. The axis of the spindle passes through cam axis. The cam rotates in anti clockwise direction. OR A push rod operated by a cam is to rise and fall with SHM along an inclined straight path. The least radius of the cam is 50mm and the push rod is fitted at its lower end with a roller of 30mm diameter. When it its lower position the roller center is vertically above the cam axis. The maximum displacement of the roller is 50mm in the direction inclined 30 ⁰	20	Co4	L1, L2, L3
Q. 10	a	through a distance of 30mm in one fourth remains at rest in one fourth is lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and descent. However during decent deceleration period is half the acceleration period. The axis of the spindle passes through cam axis. The cam rotates in anti clockwise direction.	20	Co ₄	L1, L2, L3
Q. 10	a	through a distance of 30mm in one fourth remains at rest in one fourth is lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and descent. However during decent deceleration period is half the acceleration period. The axis of the spindle passes through cam axis. The cam rotates in anti clockwise direction.	20	Co4	L1, L2, L3
Q. 10	a	through a distance of 30mm in one fourth remains at rest in one fourth is lowered in one third and remains at rest for the remainder of a complete revolution. Draw the profile assuming the least radius of the cam profile as 25mm and that the spindle moves with UARM on both during ascent and descent. However during decent deceleration period is half the acceleration period. The axis of the spindle passes through cam axis. The cam rotates in anti clockwise direction.	20	Co4	L1, L2, L3