Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination Design and Analysis of Algorithms

TIME: 03 Hours
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module -1			Bloom's Taxonomy Level	Marks
Q. 01	a	Define an algorithm. Discuss the criteria of an algorithm with an example.	L1	6
	b	What are the various basic asymptotic efficiency classes? Explain Big O, Big Omega and Big Theta asymptotic notations.	L2	8
	c	Discuss about the important problem types and fundamental data structures.	L2	6
OR				
Q. 02	a	Outline an algorithm to find maximum of n elements and obtain its time complexity.	L2	7
	b	Design an algorithm to search an element in an array using sequential search. Discuss the Best case worst case and average case efficiency of this algorithm	L3	7
	c	Discuss adjacency matrix and adjacency list representation of graph with an example	L2	6
Module-2				
Q. 03	a	Explain the concept of Divide and Conquer. Write the recursive algorithm to perform binary search on list of elements	L2	7
	b	Develop a recursive algorithm to find the minimum and maximum element from the list. Illustrate with an example.	L3	7
	c	Apply Quick sort on the following set of elements: $60,70,75,80,85,60,55,50,45$	L3	6
OR				
Q. 04	a	Apply Source removal method to obtain Topological sort for the Given Graph:	L3	6
	b	Write an algorithm to sort N numbers by applying Merge sort.	L3	7
	c	Apply Strassen's Matrix Multiplication method to multiply the given two matrices. Discuss how this method is better than general matrix multiplication method $\left[\begin{array}{ll} 4 & 3 \\ 2 & 1 \end{array}\right] \times\left[\begin{array}{ll} 2 & 5 \\ 1 & 6 \end{array}\right]$	L3	7

OR				
Q. 08	a	Apply Floyd's algorithm to find all pair shortest path for the given graph	L3	7
	b	Find the optimal tour for sales person using dynamic programming technique for the given graph and its corresponding edge length matrix $\left[\begin{array}{cccc} 0 & 10 & 15 & 20 \\ 5 & 0 & 9 & 10 \\ 6 & 13 & 0 & 12 \\ 8 & 8 & 9 & 0 \end{array}\right]$	L3	7
	c	Find the shortest path from node 1 to every other node in the given graph using Bellman-Ford algorithm	L3	6
Module-5				
Q. 09	a	What is the central principle of backtracking? Apply backtracking to solve the below instance of sum of subset problem $S=\{5,10,12,13,15,18\}$ $\mathrm{d}=30$.	L3	7
	b	Solve the below instance of assignment problem using branch and bound algorithm	L3	7
	c	What is Hamiltonian circuit problem? What is the procedure to find Hamiltonian circuit of a graph?	L2	6
OR				
Q. 10	a	Illustrate N Queen's Problem using Back tracking to solve 4 Queen's problem	L3	8
	b	Explain the following: a] LC Branch and bound b] FIFO Branch and bound	L2	6
	c	Explain the classes of NP-Hard and NP-Complete problems	L2	6

