Page 0**1 of 02**

Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Advanced Surveying

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	*Bloom's Taxonomy Level	Marks
Q.01	a	With the help of tabular column, explain the procedure of measuring horizontal angle by (i) Repetition method (ii) Reiteration method	L2	8
	b	List the fundamental lines of a theodolite. Summarize the desired relationship between them.	L2	6
	с	Define the following terms. i) Transiting ii) Swinging	L2	6
		iii) Trunnion axis		
Q.02	a	To find the elevation of the top(P) of a hill, a flag staff of height 1.5m was erected and the following observations were made from two stations A & B at considerably different elevations 156m apart. The angle of elevation from A to the top of the flag staff was $38^{\circ}24'$ and that from B to the same point $26^{\circ}12'$. A vane 1.2m above the foot of a staff held on A was sighted from B and the angle of elevation was observed to be $9^{\circ}54'$. The height of the instrument axis at A was 1.494m and the R.L. of the instrument axis at B was 45.00m. Find the horizontal distance P from B and the R.L. of P.	L3	10
	b	Derive the expressions for the horizontal distance, vertical distance and the	L3	10
elevation of an object by double plane method, when the base is inaccessible.				
Q. 03	a	Derive distance and elevation formulae for stadia tachometry, when staff held normal to the line of sight, for both an angle of elevation and angle of depression	L3	10
	b	To find the gradient between two points A and B a tacheometer was set up to another station C and the following observations were made, keeping the staff vertical	L3	10
		Staff at Vertical angle Staff readings (m)		
		A $+4^{0}20'00''$ 1.300, 1.610, 1.920		
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
		If the horizontal angle ACB is $35^{\circ}20^{\circ}$, determine the average gradient between A and B. K = 100, C = 0		
	1	OR		
Q.04	а	List the various factors that are to be considered in the selection of site for baseline and station in triangulation survey.	L2	6
	b	Write a note on classification of triangulation system.	L2	6
	с	From a satellite station S, 5.8m from main triangulation station A, the following	L3	8
		directions were observed.		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		$\frac{132}{C}$ $\frac{132}{232^0}$ $\frac{16}{24'}$ $\frac{50}{6''}$		
	1	$D = 296^{\circ} - 6' - 11''$		
		The lengths of AB AC and AD were computed to be 3265.5m, 4022.2m and		
		3086.4m respectively. Determine the directions of AB, AC and AD.		

18CV45

18CV45

Q. 05	a	List the different methods of setting out simple circular curves. Explain the linear	L3	6			
		method of setting out simple curve by the method of offset from long chord.					
	b	A road bend which deflects 80° is to be designed for a maximum speed of 100km	L3	10			
		per hour, a maximum centrifugal ratio 1/4 and a maximum rate to the change of					
		acceleration of 30cm/sec ³ , the curve consisting of a circular arc combined with					
		two spirals. Calculate i) The radius of circular arc ii) The required length of					
		transition iii) the total length of composite curve and iv) The chainages of the					
		beginning and end of transition curve, and of the junctions of the transition					
		curves with the circular arc, if the chainage of the point of intersection is					
		42862m.					
	с	With the help of a neat sketch of a simple circular curve, explain	L2	4			
		i) Tangent length					
		ii) Length of long chord					
		iii) Point of curve					
		iv) Forward tangent					
	OR						
Q. 06	а	A compound curve consisting of two arcs of radius 350m and 550m connects two	L3	8			
		straights AB and BC, which are intersected by a line PQ. The angles APQ and					
		BQP are 139°30' and 36°24' respectively. Determine the chainages of the tangent					
		points if the chainage of the intersection point B is 5425.191m.		0			
	b	The first branch of a reverse curve has a radius of 200m. Find the radius of	L3	8			
		second branch so that the curve can connect parallel straights 18m apart. The					
		distance between tangent points is to be 110m. Also calculate the length of two					
	_	branches of the curve.	1.0	4			
	С	with a neat sketch, list any four vertical curves.	L2	4			
Module-4			1.2	6			
Q. 07	a h	A vertical photograph, unce taken at an altitude of 1200m above the mean see		0			
	U	A ventical photograph was taken at an annual of 1200m above the mean sea	LS	0			
		300m if the focal length of camera is 15cm					
	C	List the reasons for keeping overlap in photographs	12	6			
	C List the reasons for keeping overlap in photographs.						
0.08	9	Derive the expression for relief displacement on a vertical photograph	13	8			
Q. 00	h	Explain the procedure for aerial survey	12	6			
	С С	Find the number of photographs (size 250 x 250mm) required to cover over a	13	6			
	C	area of 20km x 16km, the longitudinal overlap is 60% and the side overlap is	1.5	0			
		30% scale of the photograph is $1 cm = 150 m$					
Module.5							
0.09	а	Define remote sensing. Explain the stages of idealized remote sensing system.	L2	8			
x . 07	b	With neat sketch, explain the electromagnetic spectrum.	L2	6			
	c	Explain the components of GIS.	L2	6			
	OR						
0, 10	а	Mention the advantages of total station and also discuss the working principles of	L2	8			
×. 10	a	the same.		Ŭ			
	b	What are the advantages of LIDAR technology?	L2	4			
	c	What is GPS? Explain the basic principles of GPS and its application in	L2	8			
	Ē	surveying.		-			