18EE43

Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Transmission and Distribution

TIME: 03Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each**MODULE**. 02. Assume any missing data.

Module -1			*Bloom's Taxonomy Level	Marks		
	a	Show that increase in transmission voltage causes:				
Q.01		(i) Reduction in copper losses	L2	06		
		(ii) Reduced weight of conductor material.				
	b	Obtain an expression for sag of a line conductor suspended between two equal				
		supports. Assume parabolic configuration.	L3	06		
	с	A 3 phase overhead transmission line is being supported by 3 discs of				
		suspension insulators. The potentials of first & second insulators are 8 &				
		11kV respectively. Calculate				
		(i) The line voltage.	L3	08		
		(ii) The ratio of capacitance between pin & earth to self				
		capacitance of each unit.				
		(iii) The string efficiency.				
	OR					
	a	Explain typical line diagram of Transmission & Distribution scheme	T 1	06		
		indicating voltage levels used at different stages.	LI	06		
	b	Explain the different methods to equalize the potential across the string of	Т 1	06		
		suspension insulator.	LI	06		
0.02	с	An overhead transmission line has a span of 200m, between the supports. The				
Q.02		supports are at the same level. The area of cross section of conductor is				
		1.9cm ² while the ultimate strength is 5000kg/cm ² . The specific gravity of the	1.2	00		
		conductor material is 8.9gm/cm ³ . If the conductor is subjected to the wind	L3	08		
		pressure of 1.5kg/m length, calculate the sag if factor of safety is 5. Also				
		calculate the vertical sag.				
	a	With neat diagram, develop an expression for inductance of a 3 phase	L2	06		
	1	overhead line with unsymmetrical spacing.				
	b	Explain the process of transposition of transmission lines and its advantages.	L1	06		
Q. 03	с	A 3-phase 50Hz line consists of three conductors each of diameter 21mm. the				
		spacing between the conductors is as follows. A = B = 2.5m B = $C = 4.5m$ C = $A = 2.5m$	12	00		
		A - B = 2.5111, $B - C = 4.5111$, $C - A = 5.5111Find the canacitance and canacitive reactance per phase per km of the line$	LS	08		
		The line is transposed at regular intervals.				
OR						
Q.04	a	Derive an expression for capacitance of a 3 phase single circuit line with	13	08		
		equilateral spacing.	LJ	00		
	b	What is the effect of earth on the capacitance of single phase transmission	L1	04		
		line?				

18EE43

	c	Calculate inductance of each conductor in a 3-phase, 3 wire system. Conductors are arranged in a horizontal plane with spacing $d_{31}=4m$, $d_{12}=d_{23}=2m$. the conductors are transposed and have a diameter of 2.5cm.	L3	08
Module-3				
	a	Write a short note on classification of transmission lines.	L1	05
Q. 05	b	Derive an expression for A, B, C, D constants of a long transmission line by rigorous method of analysis.	L3	07
	с	 A 3-φ, 50 Hz transmission line 100km long delivers 20MW at 0.9 p.f. lagging & at 110kV. The resistance & reactance of the line per phase per km are 0.2Ω& 0.4Ω respectively while capacitive admittance is 2.5 x 10⁻⁶ mho/km/phase. Calculate (i) Sending end voltage & current, (ii) Transmission efficiency, use nominal T method. 	L3	08
OR				
Q. 06	a	Derive an expression for voltage regulation and transmission efficiency of a single phase short transmission line with the help of vector diagram.	L3	06
	b	Explain Ferranti effect with suitable example.	L1	06
	с	 A balanced 3 phase load of 30MW is supplied at 132kV, 50Hz and 0.8 pf lagging by means of a transmission line. The series impedance of a single conductor is (20 + j52)Ω and total phase to neutral admittance is 315x10⁻⁶ ⁶mho. Using nominal T method find: (i) A, B, C, D constants of line (ii) Sending end voltage (iii)Regulation of the line 	L3	08

18EE43

		Module-4			
Q. 07	а	Draw the cross sectional view of single core cable and explain its construction.	L2	06	
	b	Derive an expression for insulation resistance of a cable.	L1	06	
	c	A 3-phase, 50Hz, 132kV transmission line consists of conductors of 1.17cm dia & spaced equilaterally at a distance of 3 m. The conductors have smooth surface with $m_o = 0.96$. The barometric pressure is 72 cm of Hg & the temperature is 20°C. Determine corona loss per km per phase under fair & foul weather conditions.	L3	08	
OR					
Q. 08	а	What is corona? Briefly explain the phenomenon of corona.	L1	06	
	b	Explain various methods employed to reduce the effect of corona.	L1	06	
	c	A single core lead covered cable has a conductor diameter of 3cm with insulation diameter of 8.5cm. The cable is insulated with two dielectrics 5 & 3 respectively. The maximum stresses in the two dielectrics are 38kV/cm & 26kV/cm respectively then calculate radial thickness of insulating layers & working voltage of the cable.	L3	08	
		Module-5			
	а	Explain Radial and parallel distribution schemes.	L1	06	
Q. 09	b	With the help of neat graph explain bathtub curve.	L1	06	
	c	A single phase distributor one km long has resistance and reactance per conductor of $0.1 \Omega \& 0.15 \Omega$ respectively. At the far end voltage $V_B = 200$ V & the current is 100 A at a p.f. of 0.8 lagging. At the midpoint of the distributor, a current of 100A is tapped at a p.f. of 0.6 lagging. Calculate : (i) voltage at mid point (ii) sending end voltage (iii) phase angle between sending end voltage & receiving end voltage.	L3	08	
		OR			
Q. 10	а	What is power quality? Explain various power quality problems.	L1	06	
	b	Explain the effect of disconnecting the neutral in a 3-phase, 4-wire system with the help of suitable example.	L1	08	
	c	 A single phase AC distributor AB 300m long is fed from end A and is loaded as: (i) 100A at 0.707 pf lag; 200m from point A. (ii) 200A at 0.8 pf lag; 300m from point A. The load resistance and reactance of the distributor is 0.2Ω and 0.1 Ω per km. calculate the total voltage drop in the distributor. The load pfs are referred to the voltage at far end. 	L3	06	

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.