Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination Transmission and Distribution

TIME: 03Hours

Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from eachMODULE. 02. Assume any missing data.

| | cA 3- phase, 50 Hz, 66kV overhead line conductors are placed in a horizontal
 plane as shown in fig. 4 (c). The conductor diameter is 1.25cm. The line
 length is 100km. Calculate the capacitance per phase and charging current per
 phase. Assume complete transposition of the lines. | | |
| :--- | :--- | :--- | :--- | :--- |

18EE43

Module-4				
Q. 07	a	What is grading of cable? Briefly explain Capacitance grading.	L3	08
	b	Write a note on thermal rating of a cable.	L1	04
	c	A 3-phase, $50 \mathrm{~Hz}, 132 \mathrm{kV}$ transmission line consists of conductors of 1.956 cm dia are built so that corona takes place if the voltage exceeds 210 kV (rms). If the value of potential gradient at which ionization occurs can be taken as 30 kv per cm , find the spacing between the conductors.	L3	08
OR				
Q. 08	a	Explain the following terms with reference to corona: (i) Disruptive Critical Voltage (ii) Visual Critical Voltage (iii)Corona Power Loss	L1	06
	b	Explain various factors affecting corona.	L1	06
		A single core has a conductor of diameter 1.2 cm and its insulation thickness is 1.6 cm . the specific resistance of insulating material is $7.5 \times 10^{8} \mathrm{M} \Omega-\mathrm{cm}$. Calculate the insulation resistance per km of cable. If now this resistance is to be increased by 20%, calculate the thickness of the additional layer of insulation required.	L3	08
Module-5				
Q. 09	a	What is reliability in distribution system? Discuss.	L3	06
	b	Explain the term MTTF and MTBF.	L1	06
	c	A single phase ring distributor ABC is fed at A . The loads at B and C are 40 A at 0.8 pf lagging and 60 A at 0.6 pf lagging respectively. Both pfs expressed are referred to the voltage at point A. the total impedance of section $A B, B C$ and $C A$ are $(2+j 1),(2+j 3)$ and $(1+j 2)$ ohms respectively. Determine current in each section.	L3	08
OR				
Q. 10	a	Explain various reliability aids.	L1	06
	b	What are the limitations of Distribution system?	L1	06
	c	A two wire distributor 1200 m long is loaded as shown in fig 10 (c), B is the midpoint. The power factors at the two load points refer to the voltage at point C. the impedance of each section is $(0.1+\mathrm{j} 0.2) \Omega$. Calculate the sending end voltage, current and power factor. The voltage at point C is 220 V . Fig. 10 (c)	L3	06

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.

