Model Question Paper-2 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Subject: Electric Motors (18EE44)

Time: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**

		Module - 1	*Bloom's Taxonomy Level	Marks
Q.01	а	With a neat circuit diagram explain the speed control of DC series motor using field control	L2, L3 CO4, PO1	8M
	b	Briefly explain the necessity of starter to start the DC motor and with a neat circuit diagram explain the operation of 4-Point starter	L2, L3 CO4, PO1, PO2	8M
	С	Define efficiency of a DC motor and obtain the condition for maximum efficiency	L2, L3 CO2, PO2	4M
OR				
Q.02	а	Derive the torque equation of DC Motor and briefly explain the various types of torque in a DC Motor	L2, L3 CO1, PO1	8M
	b	Draw & explain the characteristics of DC shunt motor and mention its applications	L2 CO2, PO1	6M
	С	Explain back EMF and mention its significance	L2 CO1, PO1	6M
Module - 2				
Q.03	а	With a neat circuit diagram explain the retardation test is conducted on a DC shunt machine and show the stray losses are determined with & without fly wheel	L2, L3 CO3, PO1, PO2	8M
	b	Two shunt machines loaded for Hopkinson's test take15A at 200v from the supply. The motor current is 100A and the shunt currents are 3A & 2.5A. If the armature resistance of each machine is 0.05Ω , calculate the efficiency of each machine for this particular load condition	L3 CO3, PO2	6M
	С	With a neat circuit diagram explain the swinburne's test conducted on DC shunt motor and explain how the efficiency is determined	L2, L3 CO3, PO1, PO2	6M
Q.04	а	Derive the torque equation of a 3 phase induction motor. Also derive the condition at which torque developed by the motor is maximum and expression for maximum torque	L2, L3 C01, P01	8M
	b	Define slip of a 3 phase induction motors and explain the effect of slip on rotor parameters	L2, L3 CO2, PO1	6M
	С	Draw and explain the torque slip characteristics of a 3 phase induction motor	L2 CO2, PO2	6M
Module - 3				
Q.05	а	Draw and explain the phasor diagram of a 3 phase induction motor under loaded condition	L2, L3 CO2, PO1	6M

				18EE44
	b	Explain how high starting torque is obtained in case of a double cage	L2	6M
		rotors and draw the torque slip characteristics	CO2, PO1	
	С	A 440V, 3 phase, 50Hz, 4 pole, star connected induction motor has a full	L2, L3, L4	
		load speed of 1425rpm.The rotor has an impedance of (0.4+J4)Ω and	CO2,	8M
		rotor/stator turns ration of 0.8. calculate (i) full load torque (ii) rotor	P02,P04	
		current and full load rotor copper loss (iii) power output if windage		
		and friction losses amount to 500W (iv) maximum torque and the		
		speed at which it occurs (v) starting current (vi) starting torque		
		OR		
Q.06	а	Explain the operation of deep bar rotor induction motor along with the	L2	8M
		equivalent circuit diagram and also draw its torque slip characteristics	CO2, PO1	
	b	Briefly explain the various losses occurring in a 3 phase induction	L2, L3	6M
		motor	CO3, PO1	
	С	Draw the power flow diagram of a 3 phase induction motor and explain	L2, L3	6M
			CO3, PO1	
0.07		Module - 4	10.10	OM
Q.07	а	Explain the necessity of a starter to start 3 phase induction motor and	L2, L3 CO4 PO1	8M
		with a neat circuit diagram explain the operation of rotor resistance	P02	
	1	starter	10.10	(M
	b	List down the various methods employed for the speed control of a 3	L2, L3 CO4 PO1	6141
		phase induction motor and explain the voltage control method of speed	001,101	
		control with a neat circuit diagram	1.2	(M
	С	With a neat diagram explain the constructional features and operation	L2 CO1 PO1	6M
		of capacitor start & run type induction motor	001,101	
0.00	Γ.		1010	OM
Q.08	а	Explain the concept of double field revolving theory in a single phase	L2, L3 CO1 PO1	OM
		IM to show that the they are not self-starting	P02	
	b	Explain the operation of DOL & autotransformer starter	L2, L3	6M
			CO4, PO1,	
	-		P02	6M
	С	Mention the applications of all types of single phase induction motors	CO1. PO1	0141
		Module - 5		
0.09	а	Why synchronous motors are not self starting and explain the various	L2, L3	8M
Q.0 5		techniques employed to start the synchronous motors	CO5, PO1	
	b	Briefly explain the V & inverted V curves of a synchronous motors and	L2	6M
	2	how do you obtain them	CO5, PO1	
	с	With a neat diagram explain the constructional features and operation	L2	6M
		of linear induction motor	CO1, PO1	
		OR		
Q.10	а	With a neat diagram explain the constructional features and operation	L2	8M
		of AC servo motor	CO1, PO1	
	b	With the help of a phasor diagram explain the operation of	L2, L3	6M
		synchronous motor subjected to variable load constant excitation.	CO5, PO1	
		variable excitation constant load		
	С	Write short notes on synchronous condensers	L2	6M
			CO5. PO1	