Model Question Paper-2 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination Signal Conditioning and Data Acquisition Circuits

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module -1			
Q. 01	a	Draw the internal block schematic of an op-amp. Mention the function of each block.	4
	b		8
	c	Define input bias current. Show that the use of resistor $\mathrm{R}_{\text {comp }}$ in the closed loop amplifier circuits can compensate for bias currents.	8
		OR	
Q. 02	a	Give the high frequency model of an op-amp. Derive an expression for the magnitude of the open loop gain.	4
	b	With a neat circuit diagram of a Non-Inverting Summing amplifier circuit., derive an equation for its output voltage V_{o}.	8
	c	For the circuit in Fig.2(c), find $V_{\text {out }}$ Fig.2(c)	8
		Module-2	
Q. 03	a	With a neat circuit diagram, describe the use of Trans-resistance amplifier in light detection	4
	b	What is the use of Precision rectifier ? Explain the operation of Full wave precision rectifier along with the circuit diagram and I/O waveforms.	8
	c	Draw the circuit diagram of a basic op-amp integrator and obtain an expression for its output voltage. Also, discuss about its frequency response.	8
		OR	

Q. 04	a	Briefly discuss the types of multivibrators	4
	b	What is a Comparator? Describe the operation of the following circuits that make use of comparators i) Zero crossing detector and ii) Time marker generator. Also, sketch I/O waveforms.	8
	c	With a neat circuit diagram and I/O waveforms, explain the operation of inverting Schmitt trigger	8
		Module-3	
Q. 05	a	Define the terms i) Voltage regulation, ii) Line regulation, iii) Load regulation, and iv) Ripple rejection	4
	b	Draw a neat circuit diagram of Series voltage regulator and explain its operation. List any four characteristics of IC 7805 series voltage regulator.	8
	c	Design a voltage regulator using 723 to get a voltage output of 28 V .	8
		OR	
Q. 06	a	Define i) Passband, ii) Stopband, iii) Roll off rate and iv) Q factor for a Active filter.	4
	b	With a neat circuit diagram and frequency response curve, deduce an expression for the magnitude of the first order high pass filter gain $\|\mathrm{H}(\mathrm{j} \omega)\|$. Verify the filter operation using $\|\mathrm{H}(\mathrm{j} \omega)\|$.	8
	c	Sketch the frequency response curve and circuit diagram of a wide band pass filter. Also, design the same filter for cut off frequencies of 400 Hz and 2 kHz and a pass band gain of 4 .	8
		Module-4	
Q. 07	a	With suitable voltage waveforms, Explain the theory behind the working of Frequency divider	4
	b	With a neat circuit diagram, timing waveforms and functional diagram, explain the working of an astable multivibrator using 555 timer.	8
	c	Design an astable multivibrator of output signal frequency 1 kHz and Duty cycle of 70%.	8
		OR	
Q. 08	a	Give the definition of the terms in relation to PLL: i) Lock in range, ii) Capture range, and iii) Pull in time	4
	b	Give the block diagram of IC 566 VCO , sketch the output waveforms and deduce an expression for the output frequency of the VCO.	8
	c	Describe the construction and working of the following circuits that use PLL: i) FM Demodulator ii) Frequency translator	8
		Module-5	
Q. 09	a	Differentiate between Analog Data Acquisition system and Digital Data Acquisition system	4
	b	With a neat block diagram, explain the function of each of the components in the Digital Data Acquisition system	8
	c	Describe the various ways of digital recording	8
		OR	
Q. 10	a	Calculate the value of the LSB, MSB and Full scale output for a 5-bit DAC for the 0 to 10 V range.	4
	b	Draw a 4-bit Binary weighted DAC circuit and obtain an expression for the output voltage V_{o}. Also, draw the Transfer characteristics.	8
	c	With a neat circuit diagram, explain the operation of a 3 bit Flash ADC.	8

