18ME42

Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Applied Thermodynamics

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**. 02. Use of thermodynamic data hand book is permitted.

	*Bloom's Taxonomy Level	Marks			
Q.01	a	Derive an expression for air standard efficiency of an Otto cycle, stating the assumptions made.	L2	08	
	b	A diesel engine is operating on air standard diesel cycle has 20 cm bore and 30 cm stroke. The clearance volume is $4.2X10^4$ m ³ . The fuel is injected at constant pressure for 5% of the stroke, calculate the air standard efficiency. If the cut off is delayed from 5% to 8%, what will be the effect on efficiency?	L3	12	
		OR			
Q.02	а	Explain briefly: (i) Morse Test and (ii) Heat balance sheet	L2	08	
	b	A test on two stroke IC engine gave the following results at full load. Speed = 350 rpm ; Net brake load = 650 N ; Indicated m.e.p = 3 bar; Fuel consumption = $1.1 \times 10^{-3} \text{ kg/s}$; Jacket water temperature flow rate = 0.138 kg/s ; Jacket water temperature at inlet = 20° C; Jacket water temperature at outlet = 40° C; Room temperature = 20° C; Exhaust gas temperature = 400° C; Air used per kg of fuel = 32 kg ; Cylinder diameter = 22 cm ; Stroke = 30 cm ; Brake drum circumference = 314 cm ; Calorific value of fuel = 43 MJ/kg ; Specific heat of exhaust gases = 1.0 kJ/kg K . Determine (i) Mechanical efficiency (ii) Brake mean effective pressure. Draw a heat balance sheet including heat equivalent of BP, heat loss due to friction, heat carried away by exhaust gases and unaccounted heat loss.	L3	12	
		Module-2			
Q. 03	а	With a neat sketch, explain the working (i) Ram jet and (ii) Turbo jet	L2	8	
	b	A gas turbine working on Brayton cycle has a regenerator of 75% effectiveness. Air at inlet to compressor is at 100 kPa and 27°C and the maximum cycle temperature is limited to 900°C. The pressure ratio used is 6. If the turbine efficiency = 80%, and compressor efficiency = 82%, find (i) Percentage increase of cycle efficiency due to regeneration and (ii) Work ratio.	L3	12	
0.04	1	OR	1.2	0	
Q.04	а	Explain the methods of improving the efficiency and specific power output of a simple gas turbine cycle.	L2	8	
	b	In an open cycle constant pressure gas turbine, air enters the compressor at 1.0 bar and 27° C. The pressure of air after the compression is 4.0 bar. The isentropic efficiencies of compressor and turbine are 80% and 85% respectively. The air fuel ratio used is 80:1. Find the power required and thermal efficiency of the cycle if the flow rate of air is 5 kg/s.	L3	12	
	-	Module-3			
Q. 05	а	Sketch the flow diagram and corresponding $T - s$ diagram of a reheat vapor power cycle and derive an expression for the reheat cycle efficiency.	L2	8	
	b	A cyclic steam power plant is to be designed at turbine inlet temperature of 360°C and an exhaust pressure of 0.08 bar. After isentropic expansion of steam in the turbine, the moisture content at the turbine exhaust is not exceeding 15%.	L3	12	

18ME42

								10	
		Determine	: (i) The grea	test allowa	ble steam pr	essure at the	turbine inlet (ii)	
							mption in kg/kW	·	
		hr			a (iii) speen		inpuon in ngin ii		
				OR					
Q. 06	а	With the k	eln of a sche			explain the w	orking of an idea	1 L2	8
Q. 00	a								0
		regenerative vapor cycle and derive an expression for the overall efficiency.							
	b	Stoom ont	are the first of	taga of a	rahaat Danki	na avala at 9	MPa, 500°C and	1 L3	12
	U	expands to		12					
		turbine, w							
		Determine, w							
		steam at th							
		MW.	1						
		IVI VV .							
				M - J1	1- 4				
0.07	1		C 11 ' (Modu				T 1	4
Q. 07	а		-	-	-	(11) I on of ref	rigeration (iii) Ice	e L1	4
	1		pacity and (iv)					r L1	
	b								6
	-	absorption refrigeration systems.							
	с								10
							ter compression is		
							of the refrigeran		
			ompressor pov	ver. Use the	e properties	of refrigerant	in the table giver	1	
		below.				1	,		
		Temp	Pressure	\mathbf{h}_{f}	hg	$\mathbf{s_f}$	Sg		
		(°C)	(bar)	(kJ/kg)	(kJ/kg)	(kJ/kgK)	(kJ/kgK)		
		-10	2.26	190	345	0.95	1.50		
		30	7.50	220	363	1.10	1.45		
				0.0					
0.00	<u> </u>		C 11	OR		('') 0 ''	fic humidity (iii	T 1	1
Q. 08	а	Define the) L1	4					
		Relative h	umidity, and	(1V) Wet bu	lb temperatur	re			
	1		C 11 '	D	1 / *	1 /		T 1	
	b	Show the f	L1	6					
		(i)							
		(ii)							
		(iii)	e L3	10					
	с	`A room measures 5mX 5mX3m. It contains air at 25°C and 100 kPa at a relative humidity of 75 percent. Determine (i) the partial pressure of the dry air (ii) the							10
		specific hu	2						
		masses of	the dry air and	-		1.			
<u> </u>	-	Module-5							-
Q. 09	a								8
		compressor in terms of the pressure ratio, the clearance ratio and the index of expansion and explain the effect of clearance on the volumetric efficiency.							
		-						s L3	
	b	· · · · · · · · · · · · · · · · · · ·							12
		5% of the stroke. The machine operates between 1.0 bar and 5.0 bar. The							
		polytropic							
		compresso							
		following:	1						
		cm ³ , and ((ii) Power requ	uired to driv	e the compre	essor.			
	1	1							
									1
0			1 1 4 65	OR					-
Q. 10	a b		plain different	types of no	zzles.		and 400°C with	L2	8

18ME42

negligible velocity and a mass flow rate of 2.5 kg/s, and it exits at a pressure of 300 kPa. The flow is isentropic between the nozzle entrance and throat, and the overall nozzle efficiency is 93 percent. Determine (a) Throat velocity (ii) Throat area (iii) The enthalpy of steam at actual exit state (iv) Exit velocity and (v) Exit area.	L3	12	
--	----	----	--