## Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN


# Fourth Semester B.E. Degree Examination Fluid Mechanics 

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.


|  |  | discharge of the orifice meter $=0.64$. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | c | Find the velocity of the flow of an oil through a pipe, when the difference of mercury level in a differential U-tube manometer connected to the two tappings of the pitot-tube is 100 mm . Take co-efficient of pitot-tube 0.98 and sp . gr. of oil $=0.8$ | L3, L4 | 04 |
| OR |  |  |  |  |
| Q. 06 | a | Define Reynolds number. What is its significance? List the characteristics of laminar flow. | L1, L2 | 08 |
|  | b | Oil is to be transported from a tanker to the shore at the rate of 5 litre/sec, using a 300 mm diameter pipe for 20 km length. If $\mu=0.1 \mathrm{~N}-\mathrm{m} / \mathrm{s}^{2}$ and $\rho=900 \mathrm{~kg} / \mathrm{m}^{3}$ for the oil. Calculate power required to maintain the flow. | L3, L4 | 08 |
|  | c | Water at $15^{\circ} \mathrm{C}$ flows between two parallel plates at a distance of 1.6 mm apart. Determine : i) Maximum velocity ii) Pressure loss per unit length iii) Shear stress at the plate if the average velocity is $0.2 \mathrm{~m} / \mathrm{s}$. Viscosity of water at $15^{\circ} \mathrm{C}$ is 0.01 poise. Take unit width of the plate. | L3, L4 | 04 |
| Module-4 |  |  |  |  |
| Q. 07 | a | A kite weighing 7.848 N has an effective area of $0.8 \mathrm{~m}^{2}$. It is maintained in air at an angle of $10^{\circ}$ to the horizontal. The string attached to the kite makes an angle of $45^{\circ}$ to the horizontal and at this position the value of co-efficient of drag and lift are 0.6 and 0.8 respectively. Find the speed of the wind and the tension in the string. Take the density of air as $1.25 \mathrm{~kg} / \mathrm{m}^{3}$ | L1, L2 | 08 |
|  | b | Derive an expression for displacement thickness and momentum thickness of a flow over a plate. | L1, L2 | 08 |
|  | c | Find the difference in drag force exerted on a flat plate of size $2 \mathrm{~m} \times 2 \mathrm{~m}$ when the plate is moving at a speed of $4 \mathrm{~m} / \mathrm{s}$ normal to its plane in: i) Water ii) air of density $1.24 \mathrm{~kg} / \mathrm{m}^{3}$, Co-efficient of drag is given as 1.15 . | L3, L4 | 04 |
| OR |  |  |  |  |
| Q. 08 | a | Show by method of dimensional analysis that, for a screw propeller, the relation between the thrust F, torque T, diameter D, speed of travel U, speed of rotation N , density $\rho$ and viscosity $\mu$ may be put in the form $F=\rho D^{2} U^{2} \Phi\left[\frac{\rho D^{3} U^{2}}{T}, \frac{D N}{U}, \frac{\rho U D}{\mu},\right]$ [Hint: Take D, U , and $\rho$ as repeating variables] | L3, L4 | 08 |
|  | b | Explain different types of similitude. | L1, L2 | 08 |
|  | c | Explain Rayleigh method of the dimensional analysis. | L1, L2 | 04 |
| Module-5 |  |  |  |  |
| Q. 09 | a | Derive an expression for velocity of sound in a fluid. | L1, L2 | 08 |
|  | b | An aeroplane flying at a height of 15 km , where the temperature is $-50^{\circ} \mathrm{C}$ The speed of the plane is corresponding to Mach numbers is 2.0 . Assuming $\mathrm{k}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg}$ K, find the speed of the plane. | L3, L4 | 08 |
|  | c | Define Mach number. What is the significance of Mach number in Compressible fluid flows? | L1, L2 | 04 |
| OR |  |  |  |  |
| Q. 10 | a | Explain Necessity and limitations of CFD. | L1, L2 | 08 |
|  | b | Write short essay on the engineering application of CFD. | L1, L2 | 08 |
|  | c | Write a short note on philosophy behind CFD. | L1, L2 | 04 |

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.

