

18ME44

		Module-4		
Q. 07		The following data relate to cam profile in which the roller follower moves with SHM during ascent and UARM during descent. Minimum radius of cam $=30 \mathrm{~mm}$ Roller radius $=20 \mathrm{~mm}$ Lift $=28 \mathrm{~mm}$ Offset of follower axis $=12 \mathrm{~mm}$ towards right Angle of ascent $=90^{\circ}$ Angle of descent $=60^{\circ}$ Angle of dwell between ascent and descent $=45^{\circ}$ Draw the profile of the cam.	L3	20
Q. 08		Draw the profile of a cam operating a knife-edge follower having a lift of 30 mm . The cam raises the follower with SHM for 150° of the rotation followed by a period of dwell for 60°. The follower descends for the next 100o of the cam rotation with uniform velocity, again followed a dwell period. The cam rotates in a.c.w sense at 120 rpm and has least radius of 25 mm . Determine maximum velocity and acceleration of the follower during the lift.	L3	20
		Module-5		
Q. 09	a	Derive an equation to determine the length of path of contact by a pair of mating spur gears.	L2	08
	b	Two mating spur gears have 30 and 40 involute teeth of module 12 mm and 20° obliquity. The addendum on each wheel is to be made of such a length that the link of contact on each side of pitch point has the maximum possible length. Determine the addendum height for each gear wheel and length of line of contact.	L4	12
Q. 10		Figure shows an epicyclic Gear Train. Pinion A has 15 teeth and is rigidly fixed in the motor shaft. The wheel B has 20 teeth and gears with A, and also with annular fixed wheel D. Pinion C has 15 teeth an is integral with B (C, B being a compound gear wheel). Gear C meshes with annular wheel E, which is keyed to the machine shaft. The arm rotates about the same shaft on which A is fixed and carries the compound wheel B, C. If the motor runs at 1000 rpm , find the speed of machine shaft. Find the torque exerted on the machine shaft if motors develops a torque of 100 Nm .	L3	20

