		Model Question Paper with effect from 2019-20(CBCS Schem	ie)	
USN				
		Fourth Semester B.E. Degree Examination		
		Kinematics of Machines		
TIME	: 03 H	lours	Max. M	arks : 100
Note:	01. A	nswer any FIVE full questions, choosing ONE question from each MODI	JLE	
			Bloom's	
		Module-1	Texanomy	Marks
			Level	
Q.01	а	Distinguish between:	L1	08
		i) Higher pair and lower pair		
		ii) Kinematic pair and kinematic chain		
	b	Sketch and explain the single slider crank mechanism. Explain with	L1	12
		neat sketches, any two of inversions.		
Q.02	а	Sketch and explain the working of elliptical trammel. Prove it traces	L1	08
		an ellipse.		
	b	Sketch and explain two of intermittent motion mechanism like	L1	12
		Ratchet and Pawl & Geneva.		
		Module-2		
Q.03		The crank of a slider crank mechanism rotates at a constant speed of	L3	20
		300 rpm. The crank is 150 mm and the connecting rod is 600 mm		
		long. Determine: angular velocity and angular acceleration of		
		connecting rod, at a crank angle of 450 from inner dead center		
		position.		
		B		
		600 mg 300 mg 50 -		
0.04	-	Fig. Q. 4 d)	1.1	00
Q.04	d	different types	LI	06
	h	$\frac{1}{2}$	12	1.1
	U	P = 260 mm $P = 250 mm$ and $P = 540 mm$	LS	14
		$\begin{array}{c} \text{Inim, AB - 500 mm, BC - 250 mm and BD - 540 mm.} \\ \\ \\ \\ \\ \\ \\ \end{array}$		
		2		
		atus -		
		1		
		3		
		35047		
		+ de		
		100m A 5		
		Fig. Q. 4 b)		
		Module-3		
Q.05	а	Using complex algebra derive the expression for velocity and	L2	08
		acceleration of the piston for an in-line slider crank mechanism.		
	b	For the mechanism shown N = 250 rpm, find:	L4	12

18ME44

			18ME44
	i) Velocity of the piston and angular velocity of the		
	connecting rod.		
	ii) Acceleration of the piston and angular acceleration of		
	connecting rod.		
	$\frac{B}{1} = \frac{0}{100}$ $\frac{B}{1000} = \frac{0}{1000}$ $\frac{C}{1000} = \frac{0}{2} = 270^{\circ}$ $\frac{C}{1000} = \frac{0}{1000}$ $\frac{C}{1000} = \frac{0}{1000}$		
Q.06	For the Four Bar mechanism shown find angular velocity and acceleration of the coupler link and the follower. The crank rotates at 320 rpm c. w.	L4	20
	$ \begin{array}{c} A \\ O_{1}O_{2} = 600 \text{ mm} \\ O_{1}O_{2} = 300 \text{ mm} \\ O_{1}O_{2} = 75^{\circ} \\ O_{2}O_{2} - AB = 360 \text{ mm} \\ O_{2}B = 360 \text{ mm}. \end{array} $		
	Module-4		
Q.07	The following data relate to cam profile in which the roller follower	L3	20
	moves with UARM during ascent and descent.		
	Minimum radius of cam = 40 mm		
	Roller radius = 20 mm		
	Lift = 30 mm		
	Angle of ascent = 120°		
	Angle of descent = 120°		
	Angle of dwell between ascent and descent = 60°		
	Draw the profile of the cam.	ļ	
Q.08	Draw the profile of a cam operating a flat faced follower having a lift	L3	20

				18ME44
		of 25 mm. The cam raises the follower with SHM for 150° of the		
		rotation followed by a period of dwell for 60°. The follower		
		descends for the next 120° of the cam rotation with uniform UARM,		
		again followed a dwell period. The cam rotates in c.w. sense at 200		
		rpm and has least radius of 25 mm. Determine maximum velocity		
		and acceleration of the follower during the lift and descent.		
Module-5				
Q.09	а	State and prove Law of gearing.	L1	08
	b	Two 20° involute spur gears mesh externally and give a velocity ratio	L4	12
		of 3. Module is 3 mm and the addendum is equal to 1.1 module. If		
		the pinion rotates at 120 rpm, determine:		
		i) The minimum number of teeth on each wheel to avoid		
		interference		
		ii) The number of pairs of teeth in contact.		
Q.10		A compound epicyclic gear is shown in Fig. The gears A, D and E are	L3	20
		free to rotate on the axis P. The compound gear B and C rotate		
		together on the axis Q at the end of arm F.		
		E		
	1			