Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Theory of Machines

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**. 02. Sketches should be neat and clear

		Modulo 1	*Bloom's	Manha
		Module -1	Taxonomy	IVIALKS
0.01	а	List different types of 'kinematic pair' giving an example for each	Lever	4
Q .01	b		L1 L2	8
		Draw neat diagram of 'Peaucellier's mechanism'? Explain its Constructional		
	C	Power has to be transmitted between two shafts whose axes are having parallel	13	8
	C	misalignment. With a neat sketch explain the mechanism used for this application.	L3	0
		OR		
Q.02	а	Define complete and incomplete constrained motion. Illustrate answer with neat sketches.	L1	3
	b	Sketch and describe the working mechanism used for movement of the tool post of a shaper machine. Also, explain the reason for using this mechanism.	L2	7
	с	In the Figure 2(c) shown below, identify the structures and mechanisms.	L4	10
		(i) (i) (i) (ii) (ii) (ii) (ii) (ii) (iii) (
		Module-2		
Q. 03	a	Explain Alembert's principle.	L1	6
	b	A conical pivot supports a load of 20kN, the cone angle is 120 and the intensity	L3	6
		of normal pressure is not to exceed 0.3 MPa. The external diameter is twice the		
		internal diameter. Find the inner and outer radii of the bearing surface. If the shaft		
		rotates at 200 rpm, and the coefficient of friction is 0.1, calculate the power		
	6	Even the power transmitted by a flat balt running over a pulloy of 600 mm	13	8
	C	diameter at 200 rpm. The coefficient of friction between the belt and the pulley is		0

18MR42

		0.25, angle of lap 160° and maximum tension in the belt is 2500 N.						
		OR						
Q.04	a	List atleast two applications for each where,	L2	4				
-		(i) Higher friction is preferred,						
		(ii) Lesser friction is preferred						
-	b	Explain (i) Slip, (ii) Creep and (iii) centrifugal tension in belt drive.	L2	4				
	b	Two pulleys one 450 mm diameter and the other 200 mm diameter are on parallel	L4	12				
		shafts 1.95 m apart. A Flat belt drive is used to transmit the power. If the						
		maximum tension in the belt is 1 KN and coefficient of friction between belt and						
		pulley is 0.25. Either an open belt drive or a cross belt drive could be used.						
		Compare the power transmitted in each case and suggest the best option. The						
		larger pulley rotates at 200 rpm.						
-	Module-3							
Q. 05	а	Balancing of rotating parts necessary for high speed engines. Why?	L4	4				
	b	Four masses A, B, C and D are 200 kg, 300 kg, 240 kg and 260 kg respectively.	L3	8				
		The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and 0.3 m						
		respectively and the angles between successive masses are 45° , 75° and 135° .						
		Find the position and magnitude of the balance mass required, if its radius of						
		rotation is 0.2 m. (Either solve by Analytical Or Graphical Method)						
	с	A single cylinder reciprocating engine has speed 240 r.p.m., stroke 300 mm, mass	L3	8				
		of reciprocating parts 50 kg, mass of revolving parts at 150 mm radius 37 kg. If						
		two third of the reciprocating parts and all the revolving parts are to be balanced,						
		find :						
		(i). The balance mass required at a radius of 400 mm, and						
		(ii). The residual unbalanced force when the crank has rotated 60° from top dead						
		centre.						
		OR						
Q. 06	a	The primary unbalanced force due to reciprocating masses is maximum twice in	L3	6				
		one revolution of the crank. Prove.						
	b	A four cylinder vertical engine has cranks 150 mm long. The planes of rotation of	L3	14				
		the first, second and fourth cranks are 400 mm, 200 mm and 200 mm respectively						
		from the third crank and their reciprocating masses are 50 kg, 60 kg and 50 kg						
		respectively. Find the mass of the reciprocating parts for the third cylinder and						
		the relative angular positions of the cranks in order that the engine may be in						
		complete primary balance.						
	1	Module-4						
Q. 07	а	Define and explain the following terms relating to governors :	L1	4				
		1. Stability, 2. Sensitiveness, 3. Isochronism, and 4. Hunting.						
	b	What do you understand by gyroscopic couple? Derive the equation for its	L3	6				
		magnitude.						
	c	A Porter governor has equal arms each 250 mm long and pivoted on the axis of	L3	10				
		rotation. Each ball has a mass of 5 kg and the mass of the central load on the						
		sleeve is 25 kg. The radius of rotation of the ball is 150 mm when the governor						
		begins to lift and 200 mm when the governor is at maximum speed. Find the						
		minimum and maximum speeds and range of speed of the governor.						
	1	OR						
Q. 08	а	Discuss the controlling force and stability of a governor and show that the	L2	6				
		stability of a governor depends on the slope of the curve connecting the						
		controlling force (F_C) and radius of rotation (r) and the value (F_C/r).		1.4				
	b	The mass of the turbine rotor of a ship is 20 tonnes and has a radius of	L3	14				
		gyration of 0.60 m. Its speed is 2000 r.p.m. The ship pitches 6° above and 6°						
		below the horizontal position. A complete oscillation takes 30 seconds and the						
		motion is simple harmonic. Determine the following:						
		(1). Maximum gyroscopic couple,						
		(11). Maximum angular acceleration of the ship during pitching, and						
		(iii). The direction in which the bow will tend to turn when rising, if the rotation						
		of the rotor is clockwise when looking from the left.						
Module-5								

18MR42

0 00			т.4	~
Q. 09	а	List atleast five applications where the cam and follower mechanism.	L4	5
	b	Why a roller follower is preferred over a knife edge follower?	L2	3
	с	Design a cam to raise a valve with simple harmonic motion through 50 mm in $1/3$	L3	12
		of a revolution, keep if fully raised through 1/12 revolution and to lower it with		
		uniform acceleration and deceleration in 1/6 revolution. The valve remains closed		
		during the rest of the revolution. The diameter of the roller is 20 mm and the		
		minimum radius of the cam is 25 mm.		
OR				
Q. 10	а	Draw the displacement, velocity and acceleration diagrams for a follower when it	L4	4
		moves with uniform velocity. How is large inertia forces generated at the		
		beginning and end of each stroke taken care?		
	b	A cam rotating clockwise at a uniform speed of 200 r.p.m. is required to move an	L3	16
		offset knife edge follower with a uniform and equal acceleration and retardation		
		on both the outward and return strokes. The angle of ascent, the angle of dwell		
		(between ascent and descent) and the angle of descent is 120°, 60° and 90°		
		respectively. The follower dwells for the rest of cam rotation. The least radius of		
		the cam is 50 mm, the lift of the follower is 25 mm. The line of stroke of the		
		follower is offset by 20 mm from the axis of the cam. Draw the cam profile.		

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.