18MT42

Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination Fluid Mechanics And Machines

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**. 02. 03.

		Module -1	*Bloom's Taxonomy Level	Marks
Q.01	a	Define the following terms with S.I units: i) Kinematic viscosity ii)	L1	6
		Weight density iii) Surface tension		
	b	The dynamic viscosity of an oil, used for lubrication between a shaft and	L3	6
		sleeve is 6 poise. The shaft diameter is 0.4m and rotates at 190 rpm.		
		Calculate the power lost in the bearing for a sleeve length of 90 mm. The thickness of oil film is 1.5mm.		
	с	Define Pascal's law and prove it.	L2	8
		OR		
Q.02	a	Derive the expression for Centre of pressure of vertical plane surface	L3	8
		submerged in a liquid.		
	b	Explain the terms : Vapor pressure and Cavitation	L1	4
	c	A circular plate of 3.0 m diameter is immersed in water in such a way that	L3	8
		its greatest and least depth below the free surface are 4 m and 1.5 m		
		respectively. Determine the total pressure on one face of the plate and		
		Position of centre of pressure.		
		Module-2		
Q. 03	a	Explain the different types of fluid flows.	L2	8
	b	Define Velocity potential function and stream function.	L1	4
	с	A fluid flow field is given by $V=x^2yi + y^2zj-(2xyz + yz^2)k$. Prove that it is a	L3	8
		case of possible steady incompressible fluid flow .Calculate the velocity and exceloration at the point $(2, 1, 2)$		
		and acceleration at the point $(2,1,3)$.		
0.04	9	OK Derive an expression for Euler's equation of motion along a stream line	1213	8
Q.04	a	and deduce it to Bernoulli's equation.	L2,L3	0
	b	Mention the assumptions and applications of Bernoulli's equation	L1	4
	с	The water is flowing through a pipe having diameters 20cm and 10 cm at	L3	8
		sections 1 and 2 respectively. The rate of flow through pipe is 35 litres/s.		
		The section 1 is 6 m above datum and section 2 is 4 m above datum. If the		
		pressure at section 1 is 39.24 N/cm ² .Find the intensity of pressure at		
		section 2.		
		Module-3		
Q. 05	а	Describe the different types of Similarity between model and prototype?	L1	6
	b	The resisting force R of a supersonic plane during flight can be considered	L3	6
		as dependent upon the length of the aircraft l, velocity V, air viscosity μ ,		
		air density ρ and bulk modulus of air K. Express the functional		
		relationship between these variables and the resisting force. Use		
		Rayleigh's method		
	c	The pressure difference Δp in a pipe of diameter D and length $\overline{1}$ due to	L3	8
		viscous flow depends on the velocity V, viscosity μ , density ρ . Using		

18MT42

		Buckingham's π theorem, Obtain an expression for Δp .		
		OR		
Q. 06	а	Derive the expression for Rate of flow through a Venturimeter	L3	8
	b	An oil of specific gravity 0.8 is flowing through a venturimeter having inlet diameter 20 cm and throat diameter 10 cm. The oil-mercury	L3	8
		differential manometers shows a reading of 25 cm. Calculate the		
		discharge of oil through the horizontal venturimeter. Take $C_d = 0.98$		
		Γ is the discharge energy to be the Net by $f(0)$ where the basis of the	I. 4	4
	с	Find the discharge over a triangular Notch of 60° when the head over the V-notch is 0.3 m. Assume $C_d = 0.6$	L4	4
Module-4				
Q. 07	а	Define turbomachine? Compare Positive displacement machines with	L2	8
		turbomachines		
	b	Define Degree of reaction ?Obtain the expression for General Relationship	L1,L2	6
		between degree of reaction and utilization factor		
	c	In a certain turbomachine the inlet whirl velocity 15m/s. Inlet flow	L3	6
		velocity is 10 m/s. Blade speed are 13m/s and 8 m/s at inlet and outlet		
		respectively. Discharge is radial with an absolute velocity of 15 m/s.If		
		water is the working fluid, flowing at a rate of 1500 litres/s. Calculate i)		
		power in kW.11) change in total pressure in bar 111) the degree of reaction		
		1V) utilization factor. Is this power generating or power absorbing machine		
0.08	9	OK Derive the expression for alternate form of Fuler turbine equation and	13	10
Q. 00	а	explain the importance of energy components	25	10
	b	The radial outward flow turbo machine has no inlet whirl velocity. The	L3	10
	Ũ	blade speed at the exit is twice that at the inlet. Radial velocity is constant	20	10
		throughout. Taking inlet blade angle as 45° . Show that degree of reaction		
		R is given by $R=2+\cot\beta_2/4$, where β_2 is the blade angle at exit with respect		
		to tangential direction.		
Module-5				
Q. 09	a	Derive the condition for maximum efficiency of a Pelton wheel.	L3	8
	b	An inward flow reaction turbine works under a total head of 20m.inner	L3	8
		diameter 0.6m and outer diameter is double that of inner diameter water		
		enters at angle of 16° and vane tip is radial at entry. Water leaves the draft		
		tube has a velocity of 3.65 m/s. Calculate the speed of wheel and vane exit		
		angle. Assume water leaves radially. What will be the power developed if		
		the width at inlet is 7.5m.	1.2	4
	С	what is draft tube? what is the necessary of draft tube, explain its types	L2	4
	1	OR		
Q. 10	a	Derive the expression for maximum blade efficiency of single stage	L3	8
	h	Define compounding What is the necessity of compounding?	L.2	4
	c	A single stage impulse turbine has a diameter of 1.5 m and running at	<u>L2</u>	8
		3000 rpm. The nozzle angle is 20° speed ratio is 0.45 Ratio of relative		
		velocity at the outlet that at the inlet is 0.9. The outlet angle of blade is		
		3° less than inlet blade angle. Steam flow rate is 6kg/s . Draw the velocity		
		diagram and find the following i)velocity of whirl ii) axial thrust iii) blade		
		angles iv) power developed v) η_{blade}		

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.