Model Question Paper-1 with effect from 2020-21 (CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination
Theory of vibrations
TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

		Module - 1	Marks
Q. 1	(a)	Add the following harmonic motions analytically and check the solution graphically, $\begin{aligned} & \mathrm{X} 1=4 \cos (\mathrm{wt}+20) \\ & \mathrm{X} 2=7 \sin (\mathrm{wt}+45) \end{aligned}$	10
	(b)	Find the Fourier series expansion for the shown figure 1 b. figure 1 b	10
	(c)	Define and explain following terms: i) Natural frequency ii) Degree of freedom iii) SHM iv) resonance v) phase difference	10
OR			
Q. 2	(a)	Split the harmonic motion $\mathrm{X}=5 \cos (\mathrm{wt}+\pi / 4)$ into two harmonic motions one having phase of zero and the other of 60degree.	10
	(b)	Find the Fourier series for the saw-tooth curve as shown in figure2a. figure 2 a	10
	(c)	Determine the natural frequency of a compound pendulum.	10
Module - 2			
Q. 3	(a)	Define logarithmic decrement and show that it can be expressed as $\delta=1 / n \log (\mathrm{x} 0 / \mathrm{x} 1)$, where ' n ' cycles, x 0 is the initial amplitude and x n is the amplitude after ' n ' cycles.	10
	(b)	A mass of 8 kg hanged from a spring and makes damped oscillations. The time for 70 oscillations is 40 secs and the ratio of 1 st to 8 th displacement is found to be 3 . Find i)stiffness of spring ii) damping resistance iii) if oscillation were critically damped	10

		what is the damping resistance.	
	(c)	Determine the natural frequency of a spring mass system, where the mass of the spring is taken into account.	10
OR			
Q. 4	(a)	Determine the natural frequency of a simple pendulum i) Neglecting the mass of rod ii) Considering the mass of rod	10
	(b)	A spring mass damper system has $\mathrm{m}=3.5 \mathrm{~kg}, \mathrm{~K}=100 \mathrm{~N} / \mathrm{m}, \mathrm{c}=3 \mathrm{~N}-\mathrm{s} / \mathrm{m}$. determine i) damping factor, ii) natural frequency of damped vibration, iii) logarithmic decrement, iv) the ratio of 2 -successive amplitudes.	10
	(c)	Determine the natural frequency of a spring mass system, where the mass of the spring is taken into account.	10
Module - 3			
Q. 5	(a)	Find the response of the system of figure 5 a to a sinusoidal excitation as shown in the figure. figure 5 a	10

	(b)	Explain the basic working principle of dynamic vibration absorber.	10
	(c)	Derive the equation of motion of the system shown in figure5c. The circular cylinder has a mass ' M ', radius r , and rolls without slipping inside the circular groove of the radius R. Use Lagrange's equation. figure 5 c	10
OR			
Q. 6	(a)	Explain with a sketch vibration absorber.	10
	(b)	Derive the differential equation of motion for small oscillation of the pendulum as shown in figure 6b .Assume rods are rigid and of negligible mass.	10
	(c)	Find the natural frequency of the system shown in figure 6c. figure 6 c	10
Module - 4			
Q. 7	(a)	What do you understand by critical speed of shafts? Derive the necessary relations and thus, explain what is happening in the system carrying a shaft carrying an unbalanced disc at its centre is operated above and below its critical speed.	10
	(b)	A horizontal shaft 15 mm diameter and 1 m long is held on simply supported bearings.	10

		The weight of the disk at the mid span is 15 kg , the eccentricity of the center of gravity of the disk from the center of rotor is 0.3 mm . the Young's modulus of shaft is 200 MPa . Find the critical speed of the shaft.	
	(c)	Find the response of the system of figure 7c to a sinusoidal excitation as shown in figure 7c. figure 7c	10
OR			
Q. 8	(a)	A rotor having a mass of 5 kg is mounted mid-way on 1 cm dia shaft supported at the ends by two bearings. The bearing span is 40 cm . because of certain manufacturing in accuracy, the C.G of the disc is 0.02 mm away from the geometric centre of the rotor. If the system rotates at 3000 RPM, find the amplitude of steady state vibrations and the dynamic force transmitted to the bearings. Neglect damping and the weight of the shaft material. Assume $\mathrm{E}=1.96^{*} 10^{\wedge} 11 \mathrm{~N} / \mathrm{m}^{\wedge} 2$ for shaft material.	10
	(b)	Discuss general theory of seismic instruments and obtain the condition for using it as a vibrometer.	10
	(c)	Explain the term whirling or critical speed of a shaft. Prove that the whirling speed for a rotating mass is same as the frequency of natural transverse vibration.	10
Module - 5			
Q. 9	(a)	State and proof Maxwell reciprocal theorem. Explain Dunkerley's method.	10
	(b)	Figure $9 b$ shown a system subjected to vibration. Find an expression for the natural Frequency, locate the mode and draw mode shapes. Figure 9b	10
	(c)	Determine the natural frequency of the system shown in figure 9 c using stodola's method. figure 9 c	10
OR			

Q. 10	(a)	Explain the following: i) Co-ordinate coupling ii)Orthoganality principle and iii)Influence co-efficients.	10
	(b)	Figure 10b shows a pendulum. Determine the natural Frequencies of the system, assuming the spring is unstreched and the pendulums are vertical in the equilibrium position. Figure10b	10
	(c)	Figure 10c shows a spring mass system. Determine i) equation of motion, ii) frequencies equation and natural frequencies of the system, iii) modal vectors and mode shapes. Figure 10c	10

Model Question Paper-1 with effect from 2020-21 (CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination Theory of Vibrations

TIME: 03 Hours
Max. Marks: 40
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Q. No		Module-1	Marks
Q. 1	(a)	The parameters of a single-degree-of-freedom system are given by $m=1 \mathrm{~kg}, c=5$ $\mathrm{N}-\mathrm{s} / \mathrm{m}$, and $k=16 \mathrm{~N} / \mathrm{m}$. Find the response of the system for the following initial conditions: (a) $x(0)=0.1 \mathrm{~m}$ and $\dot{x}(0)=2 \mathrm{~m} / \mathrm{s}$ (b) $x(0)=-0.1 \mathrm{~m}$ and $\dot{x}(0)=2 \mathrm{~m} / \mathrm{s}$	12M
	(b)	Derive an Equation of motion of a spring- Mass- damper system for Free damped vibration.	8M
OR			
Q. 2	(a)	Explain the following in terms i. damping ratio ii. Critically damped vibration iii. Under damped vibration iv. Overdamped vibration	12M
	(b)	Explain the following terms: i. Principle of Superposition ii. Beats \& Gibbs Phenomenon	8M

Q. No		Module-2	Marks
Q. 3	(a)	Determine the natural frequencies of a simple spring mass system using a) Newton's Second law of motion b) Energy method	5M
	(b)	Explain viscous, coulomb, structural damping with neat sketch	5M
	(c)	Determine the natural frequency of the simple pendulum neglecting the mass of the rod	10M
OR			
		Show that the logarithmic decrement $\delta=\frac{1}{n} \operatorname{Ln}\left(\frac{x_{0}}{x_{n}}\right)$ where x_{0} is the intital amplitude and x_{n} is the amplitude after n cycles.	10M
Q. 4	(b)	Determine the following with neat sketch a) Critical Damping coefficient b) Damping factor c) Natural frequency of damped vibrations d) Logarithmic decrement e) Ratio of two consecutive amplitudes of vibrating system which consists of mass of 25 kg , a spring of stiffness $15 \mathrm{KN} / \mathrm{m}$, and a damper. The damping provided is only 15% only the critical value.	10M

Q. No		Module-3	Marks
Q. 5	(a)	Discuss the principle of operation of Seismic instrument, vibrometer and accelerometer; Draw the relevant frequency response curve for each.	10M
	(b)	Derive expression for steady state amplitude and phase lag of single degree freedom subjected to forced vibration	5M
	(c)	Explain the following with neat sketch (a)Frahm's reed tachometer (b)Fultron tachometer	5M
OR			
Q. 6	(a)	Define the following with neat sketch i. Forced vibration ii. Magnification factor iii. Vibration isolation iv. transmissibility	8M
	(b)	Derive an expression for amplitude of whirling shaft with air damping	10M
Q. No		Module-4	Marks
Q. 7	(a)	Explain about the Co-ordinate coupling and the Principal Co-ordinates.	10M
	(b)	Determine the Principal co-ordinates for the spring mass system shown in fig below.	10M
OR			
Q. 8	(a)	Explain the Principal of dynamic vibration absorber and explain the demerits of it.	10M
	(b)	Fig shows the vibrating system having two degree of freedom. Determine the two natural frequencies of vibration and the ratio of amplitudes of the motion of M_{1} and M_{2} for two modes of vibration. Given, $\mathrm{M}_{1}=1.5 \mathrm{~kg}, \mathrm{M}_{2}=0.80 \mathrm{~kg}, \mathrm{k}_{1}=\mathrm{k}_{2}=40 \mathrm{~N} / \mathrm{m}$.	10M

		Module - 5	Marks
Q. 9	(a)	Use the Stodola method to find the fundamental mode of vibration and its natural frequency of the spring mass system as shown in fig. Take $\mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{k}_{3}=1, \mathrm{M}_{1}=\mathrm{M}_{2}=\mathrm{M}_{3}=1$.	8M
	(b)	Explain Influence Coefficients and the types of Influence co-efficient with neat sketch.	12M
Q. 10	(a)	Determine the natural frequency of the system shown in fig by Holzer's method.	12M
	(b)	Determine three natural frequencies of the spring mass system as shown in fig by Holzer's method. Assuming the initial displacement $\mathrm{X}_{1}=1$ and natural frequencies $\omega=0.30,0.50,0.75,1.0,1.25,1.50,1.75$ and 2.0.	8M

Table showing the Bloom's Taxonomy Level, Course Outcome and Programme Outcome					
Question		Bloom's Taxonomy Level attached		Course Outcome	Programme Outcome
Q. 1	(a)	L4		CO1	PO1, PO7
	(b)	L2		CO1	PO1
Q. 2	(a)	L1		CO3	PO2,PO3
	(b)	L1		CO3	PO1,PO2
Q. 3	(a)	L1		CO3	PO4
	(b)	L2		CO2	PO3
Q. 4	(a)	L1		CO1	PO2,PO5
	(b)	L2		CO3	PO3,PO5
Q. 5	(a)	L1		CO2	PO1,PO3
	(b)	L2		CO3	PO3,PO4
Q. 6	(a)	L1		CO2	PO3
	(b)	L2		CO3	P06,P07
Q. 7	(a)	L1		CO2	PO3
	(b)	L4		CO3	PO4
Q. 8	(a)	L1		CO3	PO3,PO4
	(b)	L4		CO3	PO4,PO5,PO7
Q. 9	(a)	L3		CO3	PO3
	(b)	L1		CO 2	PO3
Q. 10	(a)	L5		CO1	PO4,PO5
	(b)	L5		CO3	PO3,PO4,PO7
Bloom's Taxonomy Levels		Lower order thinking skills			
		Remembering (knowledge): L_{1}	Und Com	$\begin{aligned} & \text { anding } \\ & \text { hension): } L_{2} \end{aligned}$	$\begin{aligned} & \text { Applying (Application): } \\ & L_{3} \end{aligned}$
		Higher order thinking skills			
		Analyzing (Analysis): L_{4}	Valu	g (Evaluation): L_{5}	Creating (Synthesis): L_{6}

