Model Question Paper-1 with effect from 2020-21 (CBCS Scheme)

USN

TIME: 03 Hours

Aerospace Structures-II

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1		Marks
Q.01	a	Calculate the direct stress distribution for the following section where the beam is subjected to a bending moment of 100KNm applied in a plane parallel to the longitudinal axis of the beam inclined at 30° to the left of the vertical.	300 mm	10
	b	Calculate the tensile and compressive stresses for the following section which undergoes the bending moments of 10 KNm and 12 KNm along X,Y axis respectively.	10 mm	10
		OR		
Q.02	a	Calculate the direct stress along the depth of the cantilever beam as shown in fig having length of 6 m	A 200 mm B 25 KN 30 ⁴ Y × X 300 mm 2 5 KN 20 mm J 20 mm D	10
	b	Obtain the bending stress values at all points for the following section.	5 cm 5	10
		Module	-2	10
Q. 03	a	Plot the shear flow distribution and find shear centre for the section given below. Take t= 2mm	1.2 kN	10

18AS54

Outcome					
Question		Bloom's Taxonomy L attached	evel	Course Outcome	Programme Outcome
Q.1	(a)	L3		CO1	PO1,PO2,PO3
	(b)	L3		CO1	PO1,PO2,PO3
Q.2	(a)	L3		CO1	PO1,PO2,PO3
	(b)	L3		CO1	PO1,PO2,PO3
Q.3	(a)	L3		CO2	PO1,PO2,PO3
	(b)	L3		CO2	PO1,PO2,PO3
Q.4	(a)	L3		CO2	PO1,PO2,PO3
	(b)	L3		CO2	PO1,PO2,PO3
Q.5	(a)	L3		CO2	PO1,PO2,PO3
	(b)	L3		CO2	PO1,PO2,PO3
Q.6	(a)	L3		CO2	PO1,PO2,PO3
	(b)	L3		CO2	PO1,PO2,PO3
Q.7	(a)	L2		CO3	PO1,PO2,PO3,PO12
Q.8	(a)	L3		CO1	PO1,PO2,PO3
	(b)	L2		CO2	PO1,PO2,PO3,PO12
Q.9	(a)	L3		CO1	PO1,PO2,PO3
	(b)	L2		CO2	PO1,PO2,PO3,PO12
Q.10	(a)	L3		CO1	PO1,PO2,PO3
	(b)	L2		CO3	PO1,PO3,PO12
Bloom's Taxonomy Levels		Lower order thinking skills			
		Remembering(knowledge): L_1 Understa Compreh		anding hension): L_2	Applying (Application): L ₃
		Higher order thinking skills			
		Analyzing (Analysis): L_4	Analyzing (Analysis): L_4 Valuating (Evaluation): L_5 Creating (Synthesis)		

Model Question Paper-2 with effect from 2020-21(CBCS Scheme)

USN

Aerospace Structures-II

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

	Module -1			Marks
Q.01	a	Calculate the direct stress distribution through the depth of the beam for the following section where the beam is subjected to a bending moment of 100 KNm in a vertical plane.	300 mm	10
	b	Calculate the tensile and compressive stresses for the following Z section if the moments are M_x =4 KNm, M_y =6 KNm.		10
		OR		
Q.02	a	Calculate the direct stress for the following cantilever beam section having length of 4 m.	A 200 mm B 20 mm B 20 mm C 25 KN 300 mm C 200 mm C 200 mm D D	10
	b	Calculate the direct stress for the following section subjected to a bending moment of 1500 Nm in a vertical plane.	80 mm 8 mm 8 mm 8 mm 8 mm 8 mm F 8 mm 8 mm 8 mm 8 mm 1 F 1 F 1 F 1 F 1 F 1 F 1 F 1 F	10

18AS54

		Modul	e-2	
Q. 03	a b	Calculate the shear flow distribution and shear centre for the following section. Calculate the shear flow distribution in the following section, where $V_x=10$ KNm, $V_y=12$ KNm.		10
			B 60 mm C	
		OR		
Q.04	a	Calculate the shear flow distribution and also shear centre for the following stiffener panel section where each boom area is 4 mm ² .	12 cm bins c emped meaning series 12 cm s c emped meaning series 5 cm s c emped meaning series 1 cm s c emped meaning ser	10
	D	for the following section when it is undergoing a load of 8 KNm in a vertical manner.	A (4 cm ²) 20 cm (4 cm ²) D 10 cm 10 cm B (6 cm ²) (2 cm ²) C	10
	1	Modul	e-3	
Q. 05	a	Find the internal resisting shear flow pattern for following section ABCD.	0.1 cm 20 cm 100 N 0.05 cm 10 cm 10 cm 10 cm 10 cm 10 cm	10
	b	Calculate the shear flow in the given cell structure and also calculate the angle of twist per unit length.	$\ell = 650 \text{ mm}$ $\ell = 400 \text{ mm}$ t = 1.25 mm t = 1.25 mm $\ell = 340 \text{ mm}$ t = 1.0 mm $\ell = 340 \text{ mm}$ t = 1.0 mm t = 1.0 mm t = 1.0 mm $T = 100000 \text{ N-mm}^2$ $A_1 = 70000 \text{ mm}^2$ $A_2 = 250000 \text{ mm}^2$	10
		OR		

18AS54

Q. 06	a	A multi cell structure as shown in the following figure is subjected to a torque of 1000N-m. Calculate the shear flow in the structure where the structure has constant thickness of 3mm.	16 cm 10 cm 20 cm	10
	b	Determine the shear flow and angle of twist per unit length for the following multi cell structure, if the section has constant thickness of 0.1 cm. Take G= $25*10^5$ N/cm ² .	B 10 cm C 20 cm D 10 cm 3 K C 20 cm D A F E	10
		Modul	le-4	
Q.07	a	Explain Wagner's beam theory.		20
		OR		
Q. 08	а	Write a note on pure bending of thin pl	ates.	10
	b	Give a note on crippling stresses.		10
		Modul	e-5	
Q. 09	a	Calculate the direct stress distribution for the following fuselage section which undergoes a bending moment of 100 kNm.	$\frac{1}{10000000000000000000000000000000000$	10
	b	Write a note on launch vehicle structur	es.	10
	T	OR		
Q. 10	a	Calculate the direct stress distribution for the following fuselage section is subjected to a bending moment of 100 KNm.	640 600 7 7 144 336 55 768 1400 1200 mm 7 7 7 144 336 55 768 17 7 7 7 144 336 157 168 1000 1000 1000 1000 1000 1000 1000 1000	10
	b	Explain the following. 1. Inflatable structures 2. Flying effected	or 3. Nano tubing.	10

.

Outcome						
Question		Bloom's Taxonomy L attached	evel	Course Outcome	Programme Outcome	
Q.1	(a)	L3		CO1	PO1,PO2,PO3	
	(b)	L3		CO1	PO1,PO2,PO3	
Q.2	(a)	L3		CO1	PO1,PO2,PO3	
	(b)	L3		CO1	PO1,PO2,PO3	
Q.3	(a)	L3		CO2	PO1,PO2,PO3	
	(b)	L3		CO2	PO1,PO2,PO3	
Q.4	(a)	L3		CO2	PO1,PO2,PO3	
	(b)	L3		CO2	PO1,PO2,PO3	
Q.5	(a)	L3		CO2	PO1,PO2,PO3	
	(b)	L3		CO2	PO1,PO2,PO3	
Q.6	(a)	L3		CO2	PO1,PO2,PO3	
	(b)	L3		CO2	PO1,PO2,PO3	
Q.7	(a)	L2		CO3	PO1,PO2,PO3,PO12	
Q.8	(a)	L2		CO2	PO1,PO2,PO3,PO12	
	(b)	L2		CO2	PO1,PO2,PO3,PO12	
Q.9	(a)	L3		CO1	PO1,PO2,PO3	
	(b)	L2		CO2	PO1,PO2,PO3,PO12	
Q.10	(a)	L3		CO1	PO1,PO2,PO3	
	(b)	L2		CO3	PO1,PO3,PO12	
Diague	_		Lower	order thinking skills		
Bloom's Taxonomy		Remembering(knowledge): L_1 Understa Comprehended		anding hension): <i>L</i> ₂	Applying (Application): L_3	
LEVEIS		Higher order thinking skills				
		Analyzing (Analysis): L_4 Valuating (Evaluation): L_5 Creating (Sy			Creating (Synthesis): L_6	