Model Question Paper - 1 with effect from 2020-21(CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination FLIGHT MECHANICS

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module - 1			Marks
Q. 1	(a)	With a neat sketch explain forces \& moments of an aircraft in the plain of symmetry.	10
	(b)	Derive an expression for Cmcg for an aircraft	10
OR			
Q. 2	(a)	With a explain steady state performance of an aircraft	10
	(b)	Write a note on contribution of airframe components for longitudinal stability.	10
Module - 2			
Q. 3	(a)	Explain the estimation of hinged moment parameter for longitudinal stability	10
	(b)	Write a note on stick free gradient in un accelerated flight.	10
OR			
Q. 4	(a)	Discuss about the difference between stick fixed \& stick free condition for longitudinal stability.	4
	(b)	Derive an expression for neutral point of static longitudinal stability.	12
	(c)	Write a note on trim tabs	4
Module - 3			
Q. 5	(a)	Derive an expression for contribution of airframe component of directional stability.	12

	(b)	Obtain the minimum control speed in the event of an engine failure for the following airplane. $S=65 \mathrm{~m}^{2}, \mathrm{~Sv}=6.5 \mathrm{~m}^{2}, \mathrm{Lv}=10.5 \mathrm{M}, \mathrm{BHP}=880 \mathrm{KW}$, Propeller efficiency=75\%, $\mathrm{Yp}=4.5 \mathrm{M},\left(\mathrm{dC}_{\mathrm{Lv}} / \mathrm{d} \delta \mathrm{v}\right)=0.02 / \mathrm{deg},(\delta \mathrm{r}) \max =25 \%$.	8
OR			
Q. 6	(a)	Derive an expression for estimation of Dihedral effect for lateral stability	10
	(b)	Explain the estimation of lateral control power of an aircraft.	10
Module - 4			
Q. 7	(a)	Discussed about gravitational and thrust velocity equation of a flight.	10
	(b)	Why deflecting the aileron produce a yawing moment, explain with a neat sketch.	10
OR			
Q. 8	(a)	Explain small perturbation theory \& its equation of motion.	10
	(b)	Explain the following i) Pitching velocity ii) Time rate of change of an angle of attack.	$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$
Module - 5			
Q. 9	(a)	Explain Phegoid \& short period of motion for dynamic longitudinal stability	10
	(b)	Examine the two potential cases where the Routh method breaks down as follows, (a) $\lambda^{5}+\lambda^{4}+3 \lambda^{3}+3 \lambda^{2}+4 \lambda+6=0$ (b) $\lambda^{6}+3 \lambda^{5}+6 \lambda^{4}+12 \lambda^{3}+11 \lambda^{2}+9 \lambda+6=0$.	10
OR			
Q. 10	(a)	Determine whether the characteristic equation given below have stable or unstable. (a) $2 \lambda^{3}+6 \lambda^{2}+8 \lambda+8=0$ (b) $2 \lambda^{3}+16 \lambda^{2}+4 \lambda+12=0$ (c) $\mathrm{A} \lambda^{4}+\mathrm{B} \lambda^{3}+\mathrm{C} \lambda^{2}+\mathrm{D} \lambda+\mathrm{E}=0$.	10
	(b)	With a neat sketch explain the Dutch roll and spiral mode of an aircraft.	10

Model Question Paper -2 with effect from 2020-21(CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination FLIGHT MECHANICS

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module - 1			Marks
Q. 1	(a)	With a relevant graph, explain atmosphere and International standard atmosphere of an aircraft.	10
	(b)	Derive an expression for (dcm/dcl) for various parts of an aircraft.	10
OR			
Q. 2		Explain power effect on static longitudinal stability of an aircraft.	20
Module - 2			
Q. 3	(a)	Discussed about hinged parameter for longitudinal stability for stick-free condition.	10
	(b)	Explain about restriction of aft C.G	5
	(c)	Write a note on trim tabs	5
OR			
Q. 4	(a)	Briefly explain about floating characteristics and aerodynamic balance of static longitudinal stability.	10
	(b)	Derive an expression for neutral point of static longitudinal stability.	10
Module - 3			
Q. 5	(a)	Derive an expression for stick-free directional stability of a flight.	10

	(b)	Discussed about rudder effect and dorsal fin.	10
OR			
Q. 6	(a)	Explain the following i)swept wing ii)flaps iii)one engine inoperative condition	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$
	(b)	Obtain the minimum control speed in the event of an engine failure for the following airplane. $S=65 \mathrm{~m}^{2}, S v=6.5 \mathrm{~m}^{2}, \mathrm{Lv}=10.5 \mathrm{M}, \mathrm{BHP}=880 \mathrm{KW}$, Propeller efficiency=75\%, $\mathrm{Yp}=4.5 \mathrm{M},\left(\mathrm{dC}_{\mathrm{Lv}} / \mathrm{d} \delta \mathrm{v}\right)=0.02 / \mathrm{deg},(\delta \mathrm{r}) \mathrm{max}=25 \%$.	8
Module - 4			
Q. 7	(a)	Derive an expression of rigid body equations of motion	20
OR			
Q. 8	(a)	Explain small perturbation theory \& its equation of motion.	10
	(b)	Explain the following i) Rolling rate ii) Yawing rate	$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$
Module - 5			
Q. 9	(a)	Explain the derivative for roll-yaw coupling.	10
	(b)	Examine the two potential cases where the Routh method breaks down as follows, (a) $\lambda^{5}+\lambda^{4}+3 \lambda^{3}+3 \lambda^{2}+8 \lambda+6=0$ (b) $\lambda^{6}+5 \lambda^{5}+6 \lambda^{4}+12 \lambda^{3}+11 \lambda^{2}+9 \lambda+6=0$.	10
OR			
Q. 10	(a)	Discussed about auto rotation and spin of an aircraft.	10
	(b)	Determine whether the characteristic equation given below have stable or unstable. (a) $\lambda^{3}+6 \lambda^{2}+12 \lambda+8=0$ (b) $2 \lambda^{3}+4 \lambda^{2}+4 \lambda+12=0$ (c) $\mathrm{A} \lambda^{4}+\mathrm{B} \lambda^{3}+\mathrm{C} \lambda^{2}+\mathrm{D} \lambda+\mathrm{E}=0$.	10

