Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination Dynamics of Machines

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

(a)			Consider a slider crank mechanism state and explain principle of virtual work. Q.1	(b)

Q. 5	(a)	Differentiate between flywheel and governor.	08
	(b)	A porter governor has arms 250 mm long, each are pivoted on the axis of rotation. Masses of each governor ball is 2 kg . At the mean speed of 200 RPM, it is found that centrifugal force extend at each ball is 100 Newton. Neglecting friction, determine the central load if the sleeve movement is restricted to plus or minus 20 mm . Also determine the range of speed.	12
OR			
Q. 6	(a)	Define sensitiveness, hunting, stability, governor effort and isochronous governor	10
	(b)	Tqhe mass of each Ball of a spring controlled governor is 1.4 kg . The bell crank lever as its vertical arm 90 mm and horizontal arm 40 mm for stop the distance of fulcrum from the axis of rotation is 45 mm . Just leave as a mass of 7.5 kg the skew begins to rise at 220 RPM. The rise of the sleeve for 6% ries in speed is 8 mm full stop find the initial thrust of the spring and its stiffness.	10
Module - 4			
Q. 7	(a)	Discuss the laws of solid friction.	08
	(b)	Derive an expression for total frictional torque of flat pivot bearing considering uniform pressure and uniform wear.	12
OR			
Q. 8	(a)	Derive an expression for ratio of belt tension.	10
	(b)	a shaft rotates at 250 RPM drives another shaft at 350 RPM and transmits 8 KW through a belt of 100 mm wide and 10 mm thick full stop the distance between the shaft is 4 metre Full stop the smaller Pulley is 0.5 metre diameter. Calculate the stress in the belt if it is open belt drive and also calculate for cross belt drive. Assume coefficient of friction as 0.3 .	10
Module - 5			
Q. 9	(a)	Derive an expression for gyroscopic couple considering a body rotating about Axis.	08
	(b)	Discuss the gyroscopic effect on aeroplane.	12
OR			
Q. 10	(a)	Derivean expression for displacement, velocity e and acceleration of follower when the roller is in contact with straight flank in case of tangent cam with roller follower.	10
	(b)	Forest symmetrical tangent cam operating a roller follower the least radius of CAM is 30 mm and roller radius is 15 mm full stop the angle of ascent is 60 degree the total lift is 15 mm and the speed of a cam shaft is 300 RPM full stop calculate principal dimension of cam.	10

Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination

Dynamics of Machines
TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

(a) Module -Discuss equilibrium of two force member, three force member and member with two Q.1 force and a torque.			
	(b)	08	

Table showing the Bloom's Taxonomy Level, Course Outcome and Programme Outcome

Question		Bloom's Taxonomy Level attached		Course Outcome	Programme Outcome
Q. 1	(a)	L2		CO1	1,2,3
	(b)	L3		CO1	1,2,3
	(c)				
Q. 2	(a)	L3		CO1	1,2,3
	(b)	L2		CO1	1,2,3
	(c)				
Q. 3	(a)	L3		CO 2	1,2,3
	(b)	L3		CO2	1,2,3
	(c)				
Q. 4	(a)	L3		CO 2	1,2,3
	(b)	L4		CO 2	1,2,3
	(c)	(c)			
Q. 5	(a)	L2		CO3	1,2,3
	(b)	L3		CO3	1,2,3
	(c)				
Q. 6	(a)	L3		CO3	1,2,3
	(b)	L2		CO3	1,2,3
	(c)				
Q. 7	(a)	L2		CO4	1,2,3
	(b)	L3		CO4	1,2,3
	(c)				
Q. 8	(a)	L2		CO4	1,2,3
	(b)	L3		CO4	1,2,3
	(c)				
Q. 9	(a)	L3		CO5	1,2,3
	(b)	L3		CO5	1,2,3
	(c)				
Q. 10	(a)	L2		CO5	1,2,3
	(b)	L3		CO5	1,2,3
	(c)				
Bloom's Taxonomy Levels		Lower order thinking skills			
		Remembering knowledge):L1	Und Com	nding nension): L2	Applying (Application): L3
		Higher order thinking skills			
		Analyzing (Analysis): L4	Valu	g (Evaluation): L5	Creating (Synthesis): L6

